
ARTICLE IN PRESS
Signal Processing: Image Communication 19 (2004) 793–849
*Correspondin

Apple Computer

E-mail addre

broadcom.com (

0923-5965/$ - see

doi:10.1016/j.ima
Video coding using the H.264/MPEG-4 AVC
compression standard

Atul Puria,*, Xuemin Chenb, Ajay Luthrac

aRealNetworks, Inc., 2601 Elliott Avenue, Seattle, WA 98121, USA
bBroadcom Corporation, 16215 Alton Parkway, Irvine, CA 92619, USA

cMotorola, Inc., 6420 Sequence Drive, San Diego, CA 92121, USA
Abstract

H.264/MPEG-4 AVC is a recently completed video compression standard jointly developed by the ITU-T VCEG

and the ISO/IEC MPEG standards committees. The standard promises much higher compression than that possible

with earlier standards. It allows coding of non-interlaced and interlaced video very efficiently, and even at high bit rates

provides more acceptable visual quality than earlier standards. Further, the standard supports flexibilities in coding as

well as organization of coded data that can increase resilience to errors or losses. As might be expected, the increase in

coding efficiency and coding flexibility comes at the expense of an increase in complexity with respect to earlier

standards.

In this paper, we first briefly introduce the video coding tools that the standard supports and how these tools are

organized into profiles. As with earlier standards, the mechanism of profiles allows one to implement only a desired

subset of the standard and still be interoperable with applications of interest. Next, we discuss how the various video

coding tools of the standard work, as well as the related issue of how to perform encoding using these tools. We then

evaluate the coding performance in terms of contribution to overall improvement offered by individual tools, options

within these tools, and important combinations of tools, on a representative set of video test sequences and movie clips.

Next, we discuss a number of additional elements of the standard such as, tools that provide system support, details of

levels of profiles, and the issue of encoder and decoder complexity. Finally, we summarize our overview and analysis of

this standard, by identifying, based on their performance, promising tools as well as options within various tools.

r 2004 Elsevier B.V. All rights reserved.

Keywords: MPEG; H.264; MPEG-4; AVC; JVT; Video compression; Video coding; Standard
g author. The author was previously with

where much of this work was done.

sses: apuri@real.com (A. Puri), schen@

X. Chen), aluthra@motorola.com (A. Luthra).

front matter r 2004 Elsevier B.V. All rights reserve

ge.2004.06.003
1. Introduction

Earlier MPEG audio and video coding stan-
dards such as MPEG-1 and MPEG-2 [9,10] have
enabled many familiar consumer products. For
instance, these standards enabled video CDs
and DVDs allowing video playback on digital
d.

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849794
VCRs/set-top-boxes and computers, and digital
broadcast video delivered via terrestrial, cable or
satellite networks, allowing digital TV and HDTV.
While MPEG-1 addressed coding of non-inter-
laced video at lower resolutions and bit-rates [23]
offering VHS-like video quality, MPEG-2 ad-
dressed coding of interlaced video at higher
resolutions and bit-rates [24] enabling digital TV
and HDTV with commensurate video quality. The
MPEG-1 standard was completed in 1992 while
the MPEG-2 standard was completed in 1994. At
the time of their completion they represented a
timely as well as practical, state-of-the-art techni-
cal solution [3,8,15,19,23,24,27,33,34], consistent
with the cost/performance tradeoffs of the pro-
ducts intended within the context of implementa-
tion technology available. The actual impact of
these standards in terms of inexpensive consumer
products and market penetration took at least
5 years from the time of completion of these
standards.

MPEG-4 was launched to address a new
generation of multimedia applications and ser-
vices. The core of the MPEG-4 standard [29,11]
was developed during a 5-year period (1995–1999),
however MPEG-4 is a living standard with new
parts added continuously as and when technology
exists to address evolving applications. The pre-
mise behind MPEG-4 was future interactive
multimedia applications and services such as
interactive TV, Internet video etc where access to
coded audio and video objects might be needed.
The MPEG-4 standard consists of many more
parts besides the traditional, audio, video systems
and conformance parts of earlier standards. Our
discussion in this paper is however limited only to
video. The MPEG-4 video standard is designed as
a toolkit standard with the capability to allow
coding and thus access to individual objects,
scalability of coded objects, transmission of coded
video objects on error prone networks, as well as
efficient coding of video objects. Further, MPEG-4
video also allows higher efficiency coding (than
MPEG-1 and MPEG-2) of rectangular video
without the necessity of dividing a scene into
video objects prior to coding. The significant
advances in core video standard referred to as
MPEG-4 part 2, were achieved in the capability of
coding of video objects while at the same time it
clearly did improve coding efficiency over earlier
standards. From coding efficiency standpoint,
MPEG-4 video was evolutionary in nature as it
built on coding structure of MPEG-2 and H.263
standards and adding enhanced/new tools but
within the same coding structure. Thus, MPEG-4
part 2 offers a modest coding gain but only at the
expense of a modest increase in complexity. The
expectation was that since object-based video was
the main focus, increase in complexity could be
only justified for those applications only, not for
pure rectangular video applications.

In the meantime, while highly interactive multi-
media applications appear farther into the future
than anticipated, there seems to be an inexhaus-
tible demand for much higher compression to
enable with as best video quality as possible,
practical applications such as internet multimedia,
wireless video, personal video recorders, video-on-
demand, and videoconferencing. The H.264/
MPEG-4 AVC standard [14] is a new state-of-
the-art video coding standard that addresses
aforementioned applications. The core of this
standard was completed in the form of final draft
international standard (FDIS) in June 2003 while
an extension for professional applications is
currently in progress. It promises significantly
higher compression than earlier standards. The
standard evolved from the original very promising
work performed by ITU-T VCEG in their H.26L
project over the period of 1999–2001, and with
MPEG joining the effort in late 2001, a joint team
of ITU-T VCEG and ISO MPEG experts was
established for co-developing the standard. The
resulting joint standard is called H.264 by VCEG
and MPEG-4 part 10 by MPEG (as mentioned
earlier, the original MPEG-4 video is referred to as
MPEG-4 part 2). Another name for this standard
is MPEG-4 advanced video coding (AVC) stan-
dard. Further, informally it is also referred to as
Joint Video Team (JVT) standard as it resulted
from collaborative effort of the VCEG and MPEG
standards committees. Regardless of the preferred
name, the standard achieves clearly higher
compression efficiency, often quoted as, up to a
factor of 2 [38], over the MPEG-2 video standard.
As one would expect, the increase in compression

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 795
efficiency comes at the cost of substantial increase
in complexity, often quoted as factor of 4 for the
decoder, while encoding complexity may be as
high as factor of 9 over MPEG-2. Further, the
exact improvement as well as the resulting com-
plexity depends on the profile (subset) of the
standard implemented, the choice of which is
application dependent. It is worth noting that the
standard uses the familiar motion compensated
coding structure of earlier standards, a number of
refinements to existing tools in earlier standards,
as well as key new tools and coding optimization.
Also, the coding performance benefits of indivi-
dual tools are much more scene and bit-rate
dependent, and different tools differ significantly
in performance/complexity tradeoffs they offer.
While the standard is discussed in a number
of excellent papers [39,17], in this paper we
address issues of practical video coding in an
effort to help make informed selection of coding
tools/profiles and parameters in coder design. The
rest of the paper covers the various aspects as
follows.

Section 2 of this paper presents an overview of
the H.264/MPEG-4 AVC standard. It presents the
coding structure, lists tools compared to earlier
standards and discusses the operation of encoding
and decoding compliant to this standard. Section 3
introduces prediction modes such as intra predic-
tion, motion compensated prediction including
multiple frames and multiple block sizes. Section 4
introduces, the key concepts of transform used, the
quantization process and the loop filter to reduce
blockiness artifacts. Section 5, focuses on entropy
coding techniques such as context adaptive VLC
(CAVLC) and context adaptive arithmetic
(CABAC) coding. Section 6, addresses core issues
in design of encoders for this standard, while many
of the issues are similar to earlier standards, there
are also several new issues to ensure high coding
efficiency from this standard. Section 7 presents an
experimental evaluation and analysis of perfor-
mance of various tools included in the standard.
Section 8 discusses special tools that do not impact
coding efficiency but provide a supporting role to
allow adaptation of the standard to various
applications. Section 9 discusses the current
profiles and levels structure and the motivation
behind mapping of tools to profiles. Section 10
summarizes the findings of the paper.
2. H.264/MPEG-4 AVC codec overview

We now present an overview of coding as per
the H.264/AVC standard.

2.1. Coding structure

The basic coding structure of this standard is
similar to that of earlier standards and is
commonly referred to as motion-compensated—
transform coding structure. Coding of video is
performed picture by picture. Each picture to be
coded is first partitioned into a number of slices (it
is possible to have one slice per picture also). Slices
are individual coding units in this standard as
compared to earlier standards as each slice is
coded independently.

As in earlier standards, a slice consists of a
sequence of macroblocks with each macroblock
(MB) consisting of 16� 16 luminance (y) and
associated two chrominance (Cb and Cr) compo-
nents. In rest of the paper, the terms macroblock
or MB will be used interchangeably.

Each macroblock’s 16� 16 luminance is parti-
tioned into 16� 16, 16� 8, 8� 16, and 8� 8, and
further, each 8� 8 luminance can be sub-parti-
tioned into 8� 8, 8� 4, 4� 8 and 4� 4. The 4� 4
sub-macroblock partition is called a block. The
hierarchy of video data organization is as follows:

picture ½slices fmacroblocks ðsub-macroblocks

ðblocks ðpixelsÞÞÞg�

Currently, only 4:2:0 chroma format and 8-bit
sample precision for luma and chroma pixel values
is supported in the standard. In 4:2:0 chroma
format, each macroblock associates two 8� 8
chroma components with 16� 16 luminance.
Work is in progress to extend the standard to
4:2:2 and 4:4:4 chroma formats and higher than
8-bits resolution.

As mentioned earlier, slices are individually
coded and are the coding units, while pictures
plus associated data can be considered as being the
access units. There are three basic slices types:

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849796
I—(Intra), P—(Predictive), and B—(Bi-predictive)
slices. This is basically a nomenclature as well as
functionality extension of the I-, P-, and B-picture
concept of earlier standards [9–11]. As a side note,
work on original B-pictures in MPEG was based
on ideas in [21,22,25,28], and subsequent refine-
ments. In H.264/MPEG-4 AVC standard, I-slice
macroblocks are compressed without using any
motion prediction (also true of all earlier stan-
dards as well) from the slices in other pictures. A
special type of picture containing I-slices only
called instantaneous decoder refresh (IDR) picture
is defined such that any picture following an IDR
picture does not use pictures prior to IDR picture
as references for motion prediction. Thus after
decoding an IDR all following coded pictures in
decoding order can be decoded without the need to
reference to any decoded picture prior to the IDR
picture. IDR pictures can be used for random
access or as entry points in a coded sequence.
P-slices consist of macroblocks that can be
compressed by using motion prediction, but
P-slices can also have intra macroblocks. Macro-
blocks of a P-slice when using motion prediction
must use one prediction only (uni-prediction).
Unlike previous standards, the pixels used as
reference for motion compensation can either be
in past or in future in the display order. Also, both
I- and P-slices may or may not be marked as used
for reference. B-slices also consist of macroblocks
that can be compressed by using motion prediction
and like P-slices can also have intra macroblocks.
Macroblocks of a B-slice when using motion
prediction can use two predictions (bi-prediction).
Like earlier standards, one of the motion predic-
tions can be in past and the other in future in the
display order, but unlike earlier standards, it is
also possible to have both motion predictions from
past, or both motion predictions from future.
Also, unlike earlier standards B-slices can also be
used as reference for motion prediction by other
slices in the future or in the past. Such B-slices that
are used as reference for motion prediction, are
informally called stored B-slices due to the need for
storing them unlike traditional B-slices. Besides I-,
P-, B- slices, there are two derived slice types called
SI- (switching I-) and SP- (switching P-) slices. The
SI- and SP- slices allow switching between multiple
coded streams such as different bit-rate encoded
versions of the same content, as might be needed
by some streaming applications.

2.2. Overview of coding tools

The H.264/MPEG-4 AVC standard, while
bringing new coding tools and concepts, still
builds on the proven and familiar framework of
motion compensated transform coding used by
earlier standards. Thus, while the details such as
exact prediction/coding modes, transform, or
entropy coding method may be different, the
overall coding structure is still the same. The
primary goal of H.264/MPEG-4 AVC standard is
significantly higher coding efficiency although it
also includes tools to allow error resilient coding in
certain applications. Unlike MPEG-2, MPEG-4
part 2 or H.263, it currently does not support
layered scalable coding. Further, unlike MPEG-4
part 2, it does not support object-based video- or
object-based scalable coding. The focus of the
standard is on achieving higher coding efficiency
not only for progressive but also for interlaced
video. The standard consists of a large number of
tools designed to address efficient coding over a
wide variety of video material. Similar to MPEG-2
or MPEG-4 part 2, it includes the concepts of
profiles and levels and while there are many tools
included in the standard, only the tools supported
by a profile of interest need to be implemented. In
order to best introduce the standard, a comparison
of tools of this standard with respect to tools in
MPEG-2 and MPEG-4 part 2, is in order; Table 1
presents such a comparison.

2.3. Overview of profiles

While H.264/MPEG-4 AVC standard contains
a rich set of video coding tools, not all the coding
tools are required for all applications. For
example, error resilience tools may not be needed
for video stored on a compact disk or on networks
with very few errors. If every decoder was forced
to implement all the tools, it would make such
a decoder unnecessarily too complex and thus
not very practical. On the other hand, inter-
operability between applications requires that

ls
error resilience tools

ARTICLE IN PRESS

Table 1

Comparison of main coding tools in MPEG-2, MPEG-4 Part 2, and H.264/MPEG-4 AVC

Tools MPEG-2 MPEG-4 Part 2 H.264/MPEG-4 AVC

I-, P- and B-pictures Yes Yes Yes, and, I-, P- and B-slices

Flexible picture prediction

structure and stored B

picture

Basic, no stored B-picture Basic, no stored B-picture Yes, allowed

Transform 8� 8 DCT 8� 8 DCT Approximation of 4� 4

DCT (a bit-exact transform)

Intra prediction in blocks of

intra MB

Fixed prediction of DC

coefficient

Adaptive prediction of DC

coefficient, and first row/

column of AC coefficients

Adaptive spatial prediction

of 4� 4 or 16� 16 pixel

blocks

MC prediction 16� 16,

16� 8

16� 16; interlace only 16� 8 16� 16; interlace only 16� 8 Yes, 16� 16, 16� 8, 8� 16

MC prediction 8� 8 No Yes Yes

MC Prediction sub8� 8 No No Yes, 8� 4, 4� 8, 4� 4

MC prediction with 1
4
pel No, 1

2
pel only Yes, 1

2
pel and 1

4
pel Yes, 1

4
pel only

Multi reference prediction No No Yes

Direct prediction mode in B

pictures

No 1 Mode only: temporal direct

with mv update

2 Modes: temporal direct no

mv update, spatial direct

Global MC No Yes No

Unrestricted MVs No Yes Yes

Motion vector prediction Simple Better, uses median Uses median, and segmented

Intra DC nonlinear quant,

Intra AC directional scans

and improved chroma quant

No Special nonlinear quant, MB

level adaptive directional

scan, improved chroma

quant

Nonlinear DC quant,

horizontal and vertical scans,

improved chroma quant

Quantizer weighting matrices Yes Yes No

Efficient quantizer overhead No Yes Yes

Block artifact reduction Postprocessing often used

but no suggested filter

Postprocessing suggested

with provided optional filter

Mandatory in-loop filter,

postprocessing may also be

used

Adaptive VLC coding No Yes, uses 2 tables Yes, very content adaptive

Adaptive arithmetic coding No No, not for DCT coefficients Yes, very content adaptive

Weighted prediction in P/B Usual (1
2
; 1
2
) weighting of

forward and backward

prediction in B-pictures

Usual (1
2
; 1
2
) weighting of

forward and backward

prediction in B-pictures

Yes, very flexible

Arbitrary slice order and

flexible macroblock ordering

No No Yes

Error resilient coding

support

Concealment motion vectors

for intra MB, very basic data

partitioning

Resynch marker and header

extension, reversible VLC,

data Partitioning, new pred

Ref selection, data partition-

ing, arbitrary slice order,

flexible macroblock order

Arbitrary object shape

coding support

No Yes, gray level or binary

shapes and related motion

and texture, sprite coding

No

Scalable coding support Yes, layered picture spatial,

SNR, temporal scalability

Yes, layered picture/object

spatial and temporal

scalability

With some support on

temporal and SNR

scalability

Interlace video coding

support

Yes, field picture, MB

adaptive frame/field, frame/

field scan

Yes, field picture, MB

adaptive frame/field, frame/

field scan

Yes, frame pictures, field

pictures, picture adaptive

frame/field, MB adaptive

frame/field, frame/field scan

Stream switching, splicing

and random access

Basic, intra pictures Basic, intra pictures Intra pictures/slices, SI/SP

switching pictures/slices

Division-free decoding

capability

Yes No Yes

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 797

ls
Global MC

ARTICLE IN PRESS

+ Flexible MB Ordering
+ Arbitrary Slice Order
+ Redundant Slices

Baseline Profile

Ex tended Profile Main Profile

+ SI, SP slices
+ Data
 Partitioning

• I, P slices
• CAVLC

+ B slices
+ Interlace frame coding
+ Interlace field coding
+ Picture adaptive frame/field
+ MB adaptive frame/field

+ CABAC

Fig. 1. Current Profile structure of H.264.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849798
certain bit-streams be decodable by not only class
of decoders that address that application, but
related applications as well. Therefore, the stan-
dard defines subsets of coding tools intended for
different classes of applications. These subsets are
called Profiles. A decoder may choose to imple-
ment only one subset (profile) of tools. Currently,
the following three profiles are defined but more
may be added as deemed necessary.

* Baseline profile,
* Main profile,
* Extended profile.

Fig. 1 provides a pictorial view of the current
organization of the standard into the three
aforementioned profiles.

The Baseline profile includes I- and P-slice
coding, enhanced error resilience tools (flexible
macroblock ordering (FMO), arbitrary slices and
redundant slices), and CAVLC. It does not include
B-slices, SI- or SP-slices, interlace coding tools,
and entropy coding with arithmetic coding (CA-
BAC). It was designed for low delay applications,
as well as for applications that run on platforms
with low processing power and in high packet loss
environment. Among the three profiles, it offers
the least coding efficiency.

The Extended profile is a superset of the
Baseline profile. Besides tools of the Baseline
profile it includes B-, SP- and SI-slices, data
partitioning, and interlace coding tools. It however
does not include CABAC. It is thus more complex
but also provides better coding efficiency. Its
intended applications were streaming video.

The Main profile includes I-, P- and B-slices,
interlace coding, CAVLC and CABAC. It does
not include some error resilience tools (e.g. FMO),
data partitioning, or SI and SP slices. It shares
common tools such as I- and P-slices, and CAVLC
with both the Baseline and Extended profiles. In
addition it shares B-slices and interlaced coding
tools with the Extended-profile. The Main profile
was designed to provide the highest possible
coding efficiency.

Additional details of profiles as well as semantic
constraints (levels) are described in Section 9.1.

2.4. H.264/MPEG-4 AVC codec

Similar to earlier standards, the H.264/MPEG-4
AVC standard specifies the syntax for a compliant
bitstream as well as a set of decoding semantics
that describe how to interpret the syntax elements
in the bitstream to produce decoded pictures. Thus
the decoding operations and thus the decoder is
fully specified but there is considerable flexibility in
design of the encoder. However, as in earlier
standards, even encoders must follow a standard
set of operations for the resulting picture quality to
be good, although algorithmic shortcuts are
often taken at the encoder to tradeoff picture
quality performance for speed. In fact, due to a
plethora of prediction modes in H.264/MPEG-4
AVC, considerable effort was put by the JVT
committee in demonstrating good coding quality
(although optimized encoding is not standardized)
to show value of many of the available prediction
modes.

As mentioned earlier, this standard follows a
similar coding structure as earlier video coding
standards but with many important enhance-
ments. Fig. 2 shows the block diagram of an
example encoder. The encoder follows the classic
DPCM encoding loop of motion compensated

ARTICLE IN PRESS

vidpre

vidbts

VLC / CAVLC /
CABAC Coder and
Bitstream Formatter

4x4 Forward
Transform

Buf
fer

Multi-Block
Multi-Frame

 Motion Estimator

 Intra
 Predictor

 Deblocking
 Filter

 Rate
Controller

Forward Quantizer,
Scaler and
 Forward Scan

4x4 Inverse
Transform

 Multiple
 Past / Future
 Reference
 Pictures Store

Intra / MB
Partitions MC
Mode Decision

 MB Partitions
Motion Compensa-
ted (MC) Predictor

Sel

ptype, mbtyp, dqp, dmv, dblfpar

Inverse Scan,
Scaler and Inv-
erse Quantizer

 Rowsize+1
 MBs Store

mv

mbtyp

Fig. 2. H.264/MPEG-4 AVC encoder block diagram.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 799
transform coding as in earlier standards although
the details are somewhat different. H.264/MPEG-
4 AVC includes a number of motion compensated
prediction modes requiring multi-frame, variable
block-size [20,32] (also known as multi-partition
MB motion estimation) as well as intra prediction
modes. Each slice is coded a macroblock at a time
(except in the case of interlace coding) and from it,
its prediction signal is subtracted; the prediction
signal is generated using best of the prediction
from many possible candidate modes. The residual
difference signal is coded with 4� 4 transform
and quantized and scaled, and scanned prior to
entropy coding by CAVLC or CABAC. The rest
of the block diagram represents the local decoder
in the encoder including the inverse scan, scaler
and inverse quantization, inverse transform, de-
blocking filter, and motion compensated predic-
tion and intra prediction. The key encoder-only
operations consist of motion estimation, macro-
block type mode decision, and rate control; to a
large extent these operations are similar, in
principle, but much more complex than that in
earlier standards.

ARTICLE IN PRESS

ptyp,mbtyp,smbtyp,qpd, mvd,dblfpar

 Intra
Predictor

 Deblocking
 Filter

Sel

VLC / CAVLC /
 CABAC Decoder and
Bitstream Decomposer

4x4 Inverse
Transform

Inverse Scan,
Scaler and Inv-
erse Quantizer

mv

qp

mbtyp mbtyp

mbtyp

prf, pdr, pwt

viddecbtsvid

 MB Partitions
Motion Compensa-
ted (MC) Predictor

 Rowsize+1
 MBs Store

 Multiple
 Past / Future

 Reference
 Pictures Store

Fig. 3. H.264/MPEG-4 AVC decoder block diagram.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849800
Motion compensated prediction can use a
number of block sizes such as 16� 16, 16� 8,
8� 16, 8� 8, 8� 4, 4� 8, and 4� 4. Further, 1

4

pixel motion compensation uses 6 tap filters in
horizontal and vertical direction for 1

2
pixel

positions, and a 2-tap horizontal, vertical or
diagonal filter for 1

4
pixel refinement. Intra predic-

tion can be performed on spatial blocks of 16� 16
or 4� 4 size and uses previous decoded pixels. The
number of reference frames depends on the
constraints or levels of a profile. The residual
signal after prediction is transform coded with
4� 4 block size. To avoid blocking artifacts, a
deblocking filter is employed in the loop, which
means that decoder must use the exact filter in the
same way. Entropy coding uses three different
qmethods: Exp-Golomb codes, context adaptive
variable length coding (CAVLC), and context
adaptive binary arithmetic coding (CABAC).
Interlace is handled somewhat differently than
earlier standards; four coding modes are available
such as frame pictures, field pictures, frame
pictures with picture adaptive frame/field (Pi-
cAFF), and frame pictures with MB adaptive
frame/field (MBAFF).

The result of the encoding process is an H.264/
MPEG-4 AVC compliant bitstream. This bit-
stream may be raw or formatted for storage or
delivery over specific network and is eventually
input to H.264 decoder.

We now discuss the operation of decoder, to
some extent already briefly discussed. Fig. 3 shows
the block diagram of a general H.264/MPEG-4
AVC decoder. It includes all the control informa-
tion such as picture or slice type, macroblock types
and subtypes, reference frames index, motion
vectors, loop filter control, quantizer step size
etc, as well as coded data comprising of quantized
transform coefficients.

The decoder of Fig. 3 works similar to the
local decoder at the encoder; a simplified de-
scription is as follows. After entropy (CABAC or
CAVLC) decoding, the transform coefficients
are inverse scanned and inverse quantized
prior to being inverse transformed. To the
resulting 4� 4 blocks of residual signal, an
appropriate prediction signal (intra or motion
compensated inter) is added depending on the
macroblock type mbtyp (and submbtype) mode,
the reference frame, the motion vector/s, and
decoded pictures store, or in intra mode. The
reconstructed video frames undergo deblock filter-
ing prior to being stored for future use for
prediction. The frames at the output of deblocking

ls
which

ls
means that decoder must use the exact ﬁlter in the

ls
在编码时怎么知道解码器用了何种解块滤波器？

ls

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 801
filter may need to undergo reordering prior to
display.

2.5. Components of the codec

We now describe components of Figs. 2 and 3 in
a bit more detail.

2.5.1. Transform

A 4� 4 integer transform (rather than the 8� 8
floating point transform in MPEG-2 or MPEG-
4Part 2) whose transform coefficients are explicitly
specified is used in AVC and allows it to be
perfectly invertible. In AVC, the transform coding
always utilizes predictions to construct the resi-
duals, even in the case of Intra MBs. That is, the
pixel values in a MB are always predicted, either
from neighboring pixels in the same picture (in the
case of Intra MBs), or from pixels in one or two
previously decoded reference pictures (in the case
of Inter MBs).

2.5.2. Quantization and scan

The standard specifies the mathematical for-
mulae of the quantization process. Unlike MPEG-
2, the current version of AVC does not support
downloadable quantization matrices. Quantiza-
tion is also called ‘‘scaling’’ in the standard. The
scale factor for each element in each sub-block
varies as a function of the quantization parameter
associated with the MB that contains the sub-
block, and as a function of the position of the
element within the sub-block. The rate-control
algorithm in the encoder controls the value of
quantization parameter.

Two scan patterns for 4� 4 blocks are used in
this standard — one for frame coded MBs and one
for field coded MBs.

2.5.3. CAVLC and CABAC entropy coders

VLC encoding of syntax elements for the
compressed stream is performed using Exp-Golomb
codes. For transform coefficient coding AVC
includes two different entropy coding methods for
coding quantized coefficients of the transform. Both
methods are permitted in Main profile. The entropy
coding method can change as often as every picture.
These methods are CAVLC and CABAC.
2.5.4. Loop filter

The AVC loop filter, also called the deblocking
filter, operates on a MB after motion compensa-
tion and residual coding, or on a MB after intra
prediction and residual coding, depending whether
the MB is inter coded or intra coded. The loop
filter is specified to operate on the MBs in raster
scan order. The result of the loop filtering
operation is stored as a reference picture (except
of course for pictures that are not used as reference
pictures). Loop filtering operates on the edges of
both MB and 4� 4 sub-blocks. The operations are
somewhat different at the MB edges than they are
at the inner edges. The loop filter operation is
adaptive in response to several factors, among
them the quantization parameter of the current
and neighboring MBs; the magnitude of the MV;
and the MB coding type; as well as the values of
the pixels to be filtered in both the current and
neighboring blocks and MBs.

2.5.5. Mode decision

It determines the coding mode for each MB.
Mode decision to achieve high efficiency may use
rate/distortion optimization; however such mode
decision can also be quite complex. Mode decision
may at times need to work with rate control
algorithm also. The outcome of mode decision is
the best-selected coding mode for a macroblock.

2.5.6. Intra prediction

Prediction for intra MBs is called intra predic-
tion and is done in pixel-domain in this standard.
By comparison, in MPEG-2 only a simple intra
prediction is performed on DC coefficients, and in
MPEG-4 both DC and several AC coefficients of
8� 8 DCT coefficients can be predicted; both of
these predictions are in transform-domain
[29,34,33]. In this standard, intra prediction forms
predictions of pixel values as linear interpolations
of pixels from the adjacent edges of neighboring
MBs (or 4� 4 blocks) that are decoded before the
current MB (or 4� 4 block), i.e. MBs that are
above and/or to the left. The interpolations
are directional in nature, with multiple modes,
each implying a spatial direction of prediction.
For luminance pixels with 4� 4 partitions, 9
intra-prediction modes are defined. Four intra

ls
Mode decision

ARTICLE IN PRESS

Deblocking Filter

MB Encoding

MB
Reconstruction

Deblocking
Enabled?

Frame Buffer

Last MB in
the Slice?

No

Last Slice in the
Access Unit?

No

Yes

Yes

Access Unit Encoding

Yes No

Slice Header and
MB Syntax
Encoding

Rate Control and
Mode Decision

Compressed Stream

Fig. 4. Encoding flow diagram for access units.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849802
prediction modes are defined when a 16� 16
partition is used. For chrominance pixels, 4
different modes are defined, that are similar in
nature to the 4 modes of 16� 16 luma intra-
prediction process. Both chroma blocks, Cb and
Cr, use the same prediction mode.

2.5.7. Inter prediction

This block includes both motion estimation
(ME) and motion compensation (MC). The ME/
MC process performs prediction. It generates a
predicted version of a rectangular array of pixels,
by choosing another similarly sized rectangular
array of pixels from a previously decoded refer-
ence picture and translating the reference array to
the position of the current rectangular array. In
AVC, the rectangular arrays of pixels that are
predicted using MC can have the following sizes:
4� 4, 4� 8, 8� 4, 8� 8, 16� 8, 8� 16, and
16� 16 pixels. The translation from other posi-
tions of the array in the reference picture is
specified with quarter pixel precision. The filter
to perform the translation uses 6 taps in the x and
y dimensions, plus another step that uses 2 taps.
The foregoing is primarily concerned with luma
values; motion compensation is applied to chroma
values in a slightly different way, with smaller
arrays of samples due to the 4:2:0 sampling.
Chroma MVs at 1

8
pixel resolution are derived

from transmitted luma MVs of 1
4 pixel resolution,

and simpler filters are used for chroma as
compared to luma.

2.6. Encoding process

Next, Fig. 4 provides an overview of the major
encoding functions and decisions that must be
performed starting at the access unit level. The
individual steps involved in encoding as per this
figure are shown in Figs. 5–7.

2.6.1. Slice header and MB syntax encoding

Different elements in the slice header and MB
syntax are coded using different code types.
Fig. 5(a) illustrates how an encoder must switch
between Exp-Golomb coding and fixed length
coding when encoding these syntax elements.
At the macroblock level, the main decision is
whether to code the MB as an intra-MB or an
inter-MB as shown in Fig. 5(b).

2.6.2. Rate control and mode decision

This block is responsible for bit allocation and
rate control by controlling how each macroblock
is coded. These issues are addressed in encoding
discussion in Section 6 of this paper.

2.6.3. Intra-MB and inter-MB encoding

Fig. 6(a) shows a detailed diagram of the
process for intra-MB encoding. The encoding

ARTICLE IN PRESS

Exp-Golomb
Coding?

Exp-Golomb
Code

Encoding

Fixed
Length Code

Encoding

Slice Header and MB
Syntax Encoding

Yes No

Last
Element?

Yes

No

Intra-MB ?

Intra-MB
Encoding

Inter-MB
Encoding

MB Encoding

Yes No

(a) (b)

Fig. 5. Encoding flow diagrams for (a) slice header and MB syntax, (b) MB encoding.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 803
tasks performed here depend first on whether
I-PCM encoding is performed. If I-PCM encoding
is performed, the MB can be coded directly. If
I-PCM encoding is not performed, the intra-
prediction, transform and quantization operations
are performed on the block and then either
CABAC or CAVLC encoding is utilized to
generate the compressed stream.

Fig. 6(b) shows a detailed diagram of the
process for inter-MB encoding. The encoding
tasks performed here depend first on whether the
MB is a skipped MB. If the MB is a skipped MB,
the MB 16� 16 MV or the direct-mode MV must
be calculated depending on whether the MB is in a
P-slice or a B-slice, respectively. If the MB is not a
skipped MB, a check to see if direct mode is being
used is performed. If direct mode is being used, the
direct mode MVs must be derived. If direct mode
is not being used, the differential MVs must be
encoded. Motion compensation and prediction is
then performed followed by the transform and
quantization operations. The next step is to check
to see if the block is being coded. If not, the
encoder can proceed directly to MB reconstruc-
tion. If the block is being coded, then either
CABAC or CAVLC encoding is performed before
MB reconstruction.

2.6.4. MB reconstruction

A MB may be classified as ‘‘coded’’ or as ‘‘not
coded’’. As shown in Fig. 7 both types of MBs
require prediction blocks for reconstruction. In
case of ‘‘coded’’ MB, in addition, reconstructed
prediction error block is needed and is generated
by, inverse quantization of corresponding quan-
tized transform coefficient block, and then fol-
lowed by inverse transform of the inverse
quantized block. This reconstructed prediction
error block is then added to the prediction block
to generate the reconstructed MB. For ‘‘not
coded’’ MB, only prediction block is needed.

2.7. Decoding process for residue blocks

In Fig. 8, we now present a flow diagram of the
decoding process for the residual signal. First, it is

ARTICLE IN PRESS

I-PCM ?
Yes

Output Pixel
Values

Intra-
Prediction

No

CABAC ?

Encode
CABAC

Encode
CAVLC

Yes No

Intra-MB Encoding

Transform

Quantization

Assemble the
Coded Stream

Skipped
MB ?

Yes

Calculate
MB_16x16 MV
for P slice or
Direct-Mode
for B slice

Coded
Block ?

No

CABAC ?

Encode
CABAC

Encode
CAVLC

Yes No

NoYes

Recontructing
Inter-MB Pixels

Motion Compensation/Prediction

Direct
Mode ?

Derive
Direct MVs

Encode
Differential

MVs

Yes No

Inter-MB Encoding

Transform

Quantization

(a) (b)

Fig. 6. Encoding flow diagrams for (a) intra MB, (b) inter MB.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849804
detected if CAVLC or CABAC was used for the
coding of residual signal and thus the correspond-
ing entropy decoder is used for residual signal
decoding. Next, we determine if the block being
decoded is derived from intra 4� 4 luma DC or
chroma 2� 2 DC (based on 16� 16 intra predic-
tion) or other (4� 4 intra prediction coded or inter
coded with motion compensation). Depending
on the outcome, proper dequantization and in-
verse transform (Hadamard or HCT) is applied
resulting in eventual reconstruction of residue
block. The process is repeated for all blocks of

ARTICLE IN PRESS

Inverse
Quantization

Inverse
Transform

MB Reconstruction

Add
Prediction

Blocks

Coded MB ?
Yes No

Prediction
Blocks

Fig. 7. Encoding flow diagram for macroblock reconstruction.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 805
a macroblock and for all macroblocks of the
picture being decoded.
3. Intra prediction, and motion compensated

prediction

3.1. Intra prediction

As a first step in coding of a macroblock in intra
mode, spatial prediction is performed on either
4� 4 or 16� 16 luminance blocks. Although, in
principle, 4� 4 block prediction will offer more
efficient prediction compared to 16� 16 block, in
reality, taking into account the mode decision
overhead, sometimes 16� 16 block based predic-
tion may offer overall better coding efficiency.

3.1.1. 4� 4 prediction of luma

Each of the 16, 4� 4 pixel blocks of the
luminance component of an intra macroblock
can be predicted using either the dc mode or in
one of the eight coding directions listed in Fig. 9(a)
and illustrated in Fig. 9(b). For the purpose of
illustration, Fig. 9(c) shows a 4� 4 block of pixels
a,b,c,y,p, belonging to a macroblock to be coded.
Pixels A;B;C;y;H; and I ; J;K ;L;M are already
decoded neighboring pixels used in computation of
prediction of pixels of current 4� 4 block.

For instance, if vertical prediction is employed,
pixel A is used to predict pixel column a; e; i;m;
pixel B is used to predict pixel column b; f ; j; n;
pixel C is used to predict pixel column, c; g; k; o;
and pixel D is used to predict pixel column,
d; h; l; p: Likewise in the case of horizontal pre-
diction, pixels I ; J;K ;L; predict rows starting,
respectively, with pixels, a; e; i; and m: In the
case of dc prediction, an average of 8 pixels,
A;B;C;D; I ; J;K ;L; is used as prediction of each
of the 16 pixels of the 4� 4 block. Directional
predictions use a linear weighted average of pixels
from among A, H, I–M, depending on the specific
direction of the prediction.

3.1.2. 16� 16 prediction of luma

Each 16� 16 pixel block of luminance compo-
nent of an intra macroblock can also be predicted
using 16� 16 prediction. For 16� 16 block pre-
diction, 4 modes are supported as listed in Fig. 10
comprising of the dc, vertical, horizontal and plane
prediction. In vertical prediction, each of the 16
columns (of 16 pixels each) of current macroblock
are predicted using only 1 past decoded pixel each,
similar to the case of prediction of 4 pixels of
column by a single decoded pixel in the case of
4� 4 intra prediction. The horizontal prediction
predicts an entire row of 16 pixels by a past
decoded neighboring pixel, the process is repeated
for each of the 16 rows. The dc prediction uses an
average of past decoded row and column of pixels
to predict all pixels of the 16� 16 block. The
planar prediction uses weighted combination of
horizontal and vertical adjacent pixels.

The neighboring pixels used for prediction of
16� 16 luminance component of current macro-
block belong to neighboring decoded macro-
blocks.

3.1.3. Prediction of chroma

Per macroblock there are 2, 8� 8 blocks
of chroma one corresponding to each of the

ARTICLE IN PRESS

CABAC ?

Decode
CABAC

Decode
CAVLC

Yes No

Residue block decoding

Intra
(4x4) Luma
DC block?

Yes No

Inverse Luma
DC Transform

Inverse AC
Transform

Inverse Luma
DC quanti-

zation

Inverse Scan
and AC

dequantization

Inverse
Chroma DC
Transform

Inverse
Chroma DC
quantization

Chroma 2x2
DC block

Yes No

4x4 residue
block

Reconstruct
residue block

The last
coded
block?

No

Yes

Fig. 8. Decoding flow diagram for residual signal.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849806
components, Cb and Cr. Each 8� 8 block of
chroma is subdivided into 4, 4� 4 blocks such that
each 4� 4 block depending on its location uses a
pre-fixed prediction using decoded pixels of
corresponding chroma component.

3.2. Inter/motion compensated prediction

As in the prior video coding standards, inter-
macroblocks are coded using block motion com-
pensation to determine block prediction error.
However, because an MB can be partitioned into
sub-blocks of various sizes and can have different
coding types, a number of rules are defined so that
predictions can be efficiently performed. The
process of motion compensation in MB decoding
is illustrated in Fig. 11.

3.2.1. Multiple reference pictures for motion

compensation

Generally in previous standards, for prediction
of blocks of a P-picture being coded, only
immediately previous I- or P-picture is used as a
reference. An exception was reference picture

ARTICLE IN PRESS

Num Intra 4x4 Pred Mode
 0 vertical
 1 horizontal
 2 dc
3 diagonal_down_left
4 diagonal_down_right
5 vertical_right
6 horizontal_down
7 vertical_left
8 horizontal_up

0

1

43

57

8

6

M A B C D E F G H

I

J

K

L

a b c d
e f g h
i j k l
m n o p

(a) (b) (c)

Fig. 9. (a) Intra 4� 4 prediction modes, (b) prediction directions, (c) block prediction process.

Num Intra 16x16 Pred Mode
0 vertical
1 horizontal
2 dc
3 plane

Fig. 10. Intra 16� 16 prediction modes.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 807
selection in H.263 and MPEG-4, and enhanced
reference selection in H.263. The H.264/MPEG-4
AVC standard further extends the enhanced
reference picture selection to enable efficient
coding by allowing an encoder to select, for
motion compensation purposes, among a larger
number of pictures that have been decoded and
stored. The same extension of referencing cap-
ability is also applied to motion-compensated bi-
prediction, which is restricted in prior standards to
using two specific pictures only (one of these being
the previous I- or P-picture in display order and
the other being the next I- or P-picture in display
order).

3.2.2. Multiple block-size motion compensation

with small block sizes

H.264/MPEG-4 AVC supports more selection
of motion compensation block sizes than any prior
standard, with a minimum luma motion compen-
sation block size as small as 4� 4. Segmentations
of the macroblock for motion compensation are
shown in Fig. 12. In this figure, the top row
illustrates segmentation of macroblocks while the
bottom row illustrates segmentation of 8� 8 block
partitions. The associated chroma block sizes are
given in Table 2.

3.2.3. Motion vectors

Most prior standards enable half-sample motion
vector accuracy. H.264/MPEG-4 AVC improves
up on this by using quarter-sample motion vector
accuracy for luma. In the compressed stream, only
differential motion vector is coded, which is the
difference between the motion vector of the block
and the predictive motion vector (PMV). The
PMV is usually a median value of the motion
vectors of the surrounding blocks. A chroma
motion vector is derived from the corresponding
luma motion vector. Since the accuracy of luma
motion vectors is one-quarter pixel and chroma
has half resolution compared to luma, the
accuracy of chroma motion vectors is one-eighth
pixel.

3.2.4. Skipped and direct motion prediction modes

In prior standards, a ‘‘skipped’’ MB of a
predictive picture could not signal motion in the
scene content and thus implied a zero motion, no
coded prediction error (transform coefficients)
residual. Thus, a co-located macroblock from
previous reference picture was simply copied to
reconstruct the current skipped MB. This however
meant that there was still substantial motion
vector overhead when coding video containing
global motion. H.264/MPEG-4 AVC addresses
this by an improved design that instead infers
motion in ‘‘skipped’’ MBs. As in earlier standards,
a skipped MB in a P-slice does not send explicit

ARTICLE IN PRESS

Skipped
MB ?

Yes

Calculate
MB_16x16
Luma MV

No

Fetch Luma pixel block(s) from
reference picture(s)

Direct
Mode ?

Calculate direct
Luma MVs

Extract Luma
differential MVs

Yes No

Motion Compensation

B_Skip ?

Derive Chroma
MVs

Calculate Luma
MVs from PMVs

YesNo

Reference
picture selection

Fetch Chroma pixel block(s) from
reference picture(s)

Chroma fractional
sample interpolation

Luma fractional sample
interpolation

Weighted sample
Prediction

Fig. 11. The motion-compensation process.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849808
motion vectors and any coded prediction error,
but unlike previous standards, a skipped macro-
block uses a 16� 16 block prediction motion
vector to copy a motion-compensated block rather
than assume zero motion for such a block (and
simply copy a co-located block). Further in H.264/
MPEG-4 AVC, a skipped MB in a B-slice is
defined as having no coded prediction error
but uses ‘‘direct’’ mode motion vectors of 16� 16
or 4, 8� 8 blocks, depending on the coding of
the co-located MB (as in Fig. 13) for motion
compensated prediction. The motion-compen-
sation process for skipped MBs is also illustrated
in Fig. 11.

ARTICLE IN PRESS

Table 2

Chroma block sizes associated with luminance partitions

Block size Luma 16� 16 16� 8 8� 16 8� 8 8� 4 4� 8 4� 4

(full pixel) Chroma 8� 8 8� 4 4� 8 4� 4 4� 2 2� 4 2� 2

0

Sub-macroblock
partitions

0

1

0 1

0 1

2 3

0

0

1

0 1

0

2

1

3

1 macroblock partition of
16*16 luma samples and

associated chroma samples

Macroblock
partitions

2 macroblock partitions of
16*8 luma samples and

associated chroma samples

4 sub-macroblocks of
8*8 luma samples and

associated chroma samples

2 macroblock partitions of
8*16 luma samples and

associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and

associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and

associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and

associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and

associated chroma samples

Fig. 12. Partitioning of a MB for motion compensation.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 809
The ‘‘direct’’ prediction motion reference design
used here is an enhancement of ‘‘direct’’ prediction
motion reference design [29,34,33] found in
MPEG-4 Visual (part 2) standard. In particular,
H.264/MPEG-4 AVC includes for B-slices, two
types of direct motion compensation—(a new)
spatial direct mode, and a simplified (version of
MPEG-4’s original) temporal direct mode.

In spatial direct mode, the motion vectors are
derived by examining the motion vectors of a co-
located MB without the scaling process, and using
motion vectors of neighboring blocks as used for
generating prediction motion vectors. The detailed
rules for generating motion vectors can be found
in [14].

Fig. 13 illustrates the derivation of temporal
direct-mode motion vectors when the current
picture is temporally between the reference picture
1 and the reference picture 2, where mvCol is
the motion vector of co-located partition in the
reference picture 2 and mvL0 and mvL1 are
the derived motion vectors for a direct mode
B-partition in the current B-picture. td and tb are
time units between two reference pictures and
between the reference picture 1 and the current
B-picture, respectively.

3.2.5. Luminance fractional sample interpolation

The accuracy of motion compensation is in units
of one-quarter of the distance between luma pixels.
In case the motion vector points to an integer-pixel
position, the prediction signal consists of the
corresponding pixels of the reference picture;
otherwise the corresponding pixel is obtained using
interpolation to generate fractional pixel positions.
The prediction values at half-pixel positions are
obtained by applying a 2-D FIR filter. Prediction
values at quarter-sample positions are generated by
a bilinear filter, i.e. averaging samples at integer-
and half-sample positions.

In order to reduce the impact of aliasing on the
motion-compensation, a separable 2-D Wiener
filter is specified to reduce drift due to aliasing
for multi-resolution hybrid video coding. Such
filter is applied to attenuate aliasing in the
prediction signal for single resolution hybrid video
coding with displacement vector resolutions of 1

4

ARTICLE IN PRESS

td

tb

mvCol

time

mvL0

mvL1

......

direct-mode B partition

co-located partition

Current B
Reference
picture 1

Reference
picture 2

Fig. 13. Example of temporal direct-mode motion vector inference.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849810
pel. The coefficients of such filter is given by
(1, �5, 20, 20, �5, 1)/32.

Fig. 14 shows the full pixel position, half-pixel
position, and quarter-pixel position and illustrates
the fractional sample interpolation for half-pixel
and quarter pixel. For example, the half-pixel
values H3 and H0 are computed as

H3 ¼
ðF1� 5F2þ 20F3þ 20F4� 5F5þ F6þ 16Þ

32
;

H0 ¼
H1� 5H2þ 20H3þ 20H4� 5H5þ H6þ 16ð Þ

32
:

Chromaðx; yÞ ¼
ðð8� xÞð8� yÞA þ xð8� yÞB þ ð8� xÞy C þ xy D þ 32Þ

64
;

while the quarter pixel values a and b are
computed as a ¼ ðF3þ H3þ 1=2Þ; i.e. averaging
with upward rounding of the two nearest samples
at integer and half sample positions, and b ¼
ðH3þ H7þ 1=2Þ; i.e. averaging with upward
rounding of the two nearest samples at half sample
positions in the diagonal direction.
3.2.6. Chrominance fractional sample interpolation

The prediction values for the chroma compo-
nent are always obtained by bilinear interpolation.
Since the sampling grid of chroma has
lower resolution than the sampling grid of
the luma, the displacements used for chroma
have one-eighth sample position accuracy.
That is, for the given the chroma samples A, B,
C, and D at full-sample locations, the predicted
chroma sample value Chroma (x; y) is derived as
follows:
where ðx; yÞA{(0,0),(0,1),y,(3,2),(3,3)}, indicate
various full-pel, half-pel and quarter-pel luma
positions (Fig. 15).

3.2.7. Weighted sample prediction

This standard allows the motion-compensated
prediction signal to be weighted and offset by

ARTICLE IN PRESS

A B

C D

x

y

8-x8-x

8-y8-y

Fig. 15. Fractional sample position-dependent variables in

chroma interpolation and surrounding integer position samples

A, B, C, and D.

F1

H7

F2

F3

F4

F5

F6

H0H3 H4 H5H2H1 H6

a b

--full pixel position --half-pel position --quarter-pel position

Fig. 14. Half pel and quarter pel interpolation.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 811
amounts specified by the encoder. This can
significantly improve coding efficiency for scenes
containing fades, and can be used flexibly for other
purposes as well.
When two predictions are combined to create a
common predicted reference pixel set, the weighted
sample prediction is activated in its full functional
form. The same weight sample prediction is
applicable to both luma and chroma components.
The operations performed are shown in Table 3.

3.3. Intra and MC modes supported

I-slices comprise of only intra macroblocks.
Intra macroblocks can be coded using either 4� 4
prediction or 16� 16 prediction. In either case, the
prediction is performed in spatial (pixel) domain.
In case of 4� 4 prediction, per 4� 4 block, 9
possibilities for prediction exist (8 prediction
directions and a dc value). In case of 16� 16
prediction, 4 possibilities for prediction exist
(3 prediction directions, and a dc value). The total
number of macroblock types is 26 and is identified
by mb type value in range of 0–25.

ARTICLE IN PRESS

Table 3

Operations in weighted prediction

Prediction from reference P0

LWDo1 Min (Max(0, (P0W0+O0)), 255)

LWDX1 Min (Max(0, (((P0W0+2LWD�1)cLWD)+O0)), 255)

Prediction from reference P1

LWDo1 Min (Max(0, (P1W1+O1)), 255)

LWDX1 Min (Max(0, (((P1W1+2LWD�1)cLWD)+O1)), 255)

Bi-directional prediction Min (Max(0, (((P0W0+P1W1+2LWD)c(LWD+1))+((O0+O1+1)c1)))), 255)

where, P0 and P1 are the predicted pixels from two references (8-bit integer, ranged between 0 and 255), W0 and W1 are the weighting

scale factors ranged between �256 and +255, O0 and O1 are the offsets ranged between �256 and +255, and LWD is a normalization

factor ranged between 0 and +7. Operations for the default weighted sample prediction are given by LWD=0, W0=1, O0=0, W1=1,

O1=0.

Table 4

Macroblock types in I slices (total types=26 intra)

mb type Name of mb type 16� 16PredMode CodedBlockPatternC CodedBlockPatternY

0 I 4� 4 — — —

(i+1)+4(j+3(k/15)) I 16� 16 i j k i=0,1,2,3 (inner loop) j=0,1,2 (middle loop) k=0,15 (outer loop)

25 I PCM — — —

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849812
Only 1 mb type is actually associated with 4� 4
prediction with coding modes specified further for
pairs of 4� 4, while 24 types are associated with
16� 16 block, and 1 type is reserved for PCM
coding. The 24 types for 16� 16 result due to
combinations formed by of 4 types of prediction, 3
value for codedblockpatternchroma, and 2 values
for codedblockpatternluma. The three values of
codedblockpatternchroma are: 0 (no chroma
coefficients), 1 (non-zero 2� 2 coefficients and all
chroma ac coefficients zero), and 2 (maybe 2� 2
non-zero coefficients and at least one non-zero
chroma ac coefficient). The two values of coded-
blockpatternluma are: 0 (no ac coefficient in
16� 16 block), and 1 (at least 1 ac coefficient in
16� 16 block). The entire set of 26 mb type for
I-slices is shown in Table 4 in a compact form.

Macroblocks in P-slices can be coded in inter
or intra modes. When a macroblock is coded
in inter mode, five explicit and one inferred
mb type can be used. Macroblocks of P-slices
when coded in inter mode, can use frames from
prediction list L0 for selecting references for
prediction. The five mb types of inter mode
correspond to MC with 16� 16, 16� 8, 8� 16,
8� 8, and 8� 8 with previous reference only,
based prediction and the sixth mb type is Skip (for
which no motion vectors or transform coefficients
are sent). The set of six mb type for P-slices is
shown in Table 5.

The inter modes using 8� 8 MC prediction in
addition requires specification of submacroblock
types indicating MC prediction of 8� 8, 8� 4,
4� 8 and 4� 4 type. This set of 4 sub mb type for
P-slices is shown in Table 6.

In B-slices, macroblocks can take one of 24
possible inter modes or may be coded in intra
mode. Inter macroblocks of B-slices can be coded
with uni-prediction and may use either list L0, or
list L1, or may be coded with bi-prediction using
both lists L0 and L1. In fact, whether uni- or bi-
prediction is used is decided not only on macro-
block basis but in fact on a partition basis,
allowing even the possibility of coding one of the
partition with uni-prediction using one of the two
lists L0 or L1, while the other partition may be
coded with bi-prediction. One of the inter modes is
called direct prediction (also in MPEG-4) and

ARTICLE IN PRESS

Table 5

Macroblock types 0–4 P slices (total types=5 inter+1 implicit+26 intra)

mb type Name of mb type NumMbPart Pred List for MbPart MbPart width�height

0 P L0 16� 16 1 PredL0 ; — 16� 16

1 P L0 L0 16� 8 2 PredL0 ; PredL0 16� 8

2 P L0 L0 8� 16 2 PredL0 ; PredL0 8� 16

3 P 8� 8 4 — ; — 8� 8

4 P 8� 8ref0 4 — ; — 8� 8

Inferred P Skip 1 PredL0 ; — 16� 16

Table 6

Sub-macroblock types in P slices (total types= 4 inter)

sub mb type Name of sub mb type NumSubMbPart Pred List for SubMbPart SubMbPart width�height

0 P L0 8� 8 1 PredL0 8� 8

1 P L0 8� 4 2 PredL0 8� 4

2 P L0 4� 8 2 PredL0 4� 8

3 P L0 4� 4 4 PredL0 4� 4

Table 7

Macroblock types 0–22 in B slices (total types=23 inter+1 implicit+26 intra)

mb type Name of mb type NumMbPart Pred List for MbPart MbPart width�height

0 B 16� 16 1 Direct;— 16� 16

1þ i; i ¼ 0; 1 B Li 16� 16 1 PredLi ; — 16� 16

3 B BI 16� 16 1 PredBI ; — 16� 16

4+(2� i); i=0,1 B Li Li 16� 8 2 PredLi ; PredLi 16� 8

5+(2� i); i=0,1 B Li Li 8� 16 2 PredLi ; PredLi 8� 16

8+(2� i); i=0,1 B Li Lj 16� 8 2 PredLi ; PredLj (j=(i+1)%2) 16� 8

9+(2� i); i =0,1 B Li Lj 8� 16 2 PredLi ; PredLj (j=(i+1)%2) 8� 16

12+(2� i); i=0,1 B Li BI 16� 8 2 PredLi ; PredBI 16� 8

13+(2� i); i=0,1 B Li BI 8� 16 2 PredLi ; PredBI 8� 16

16+(2� i); i=0,1 B BI Li 16� 8 2 PredBI ; PredLi 16� 8

17+(2� i); i =0,1 B BI Li 8� 16 2 PredBI ; PredLi 8� 16

20 B BI 16� 8 2 PredBI ; PredBI 16� 8

21 B BI 8� 16 2 PredBI ; PredBI 8� 16

22 B 8� 8 4 — ; — 8� 8

Inferred B Skip — Direct ; — 8� 8

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 813
involves use of implicit (spatially adjacent or
temporally colocated MB) scaled motion vectors;
the two types of direct modes are called temporal
direct and spatial direct, however this choice is
allowed on slice rather than macroblock basis. The
set of 24 mb type for B-slices is shown compactly
in Table 7.

As in the case of P-slices, an inter mode
macroblock may also be coded in 8� 8
mode. This in addition requires specification of

ARTICLE IN PRESS

Table 8

Sub-macroblock types in B slices (total types=13 inter)

sub mb type Name of sub mb type NumSubMbPart Pred List for SubMbPart SubMbPart width�height

0 B Direct 8� 8 — Direct 4� 4

1þ i; i ¼ 0; 1 B Li 8� 8 2 PredLi 8� 8

3 B BI 8� 8 2 PredBI 8� 8

4+(2� i); i=0,1 B Li 8� 4 2 PredLi 8� 8

5+(2� i); i=0,1 B Li 4� 8 2 PredLi 4� 8

8 B BI 8� 4 2 PredBI 8� 4

9 B BI 4� 8 2 PredBI 4� 8

10+i; i=0,1 B Li 4� 4 4 PredLi 4� 4

12 B BI 4� 4 4 PredBI 4� 4

Table 9

Comparison of basis matrices of WHT, Slant, and DCT transforms with that used by H.264

(a) 4� 4 WHT (b) 4� 4 Slant

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.5000 0.5000 �0.5000 �0.5000 0.6708 0.2236 �0.2236 �0.6708

0.5000 �0.5000 �0.5000 0.5000 0.5000 �0.5000 �0.5000 0.5000

0.5000 �0.5000 0.5000 �0.5000 0.2236 �0.6708 0.6708 �0.2236

(c) 4� 4 HCT (used by H.264) (d) 4� 4 DCT

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.6324 0.3162 �0.3162 �0.6324 0.6565 0.2727 �0.2727 �0.6565

0.5000 �0.5000 �0.5000 0.5000 0.5000 �0.5000 �0.5000 0.5000

0.3162 �0.6324 0.6324 �0.3162 0.2727 �0.6565 0.6565 �0.2727

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849814
submacroblock types indicating MC prediction
mode for submacroblock.(8� 8 block). The set of
13 sub mb type for B-slices is shown in Table 8.
4. Transform, quantization, and loop filter

4.1. Basics of transform selected

Unlike earlier standards, H.264/AVC uses 4� 4
transform block size instead of 8� 8 block size for
coding. Further, it does not use the DCT trans-
form but uses a simplified integer approximation.
The simplified transform in conjunction with
combining of transform scale factors with quanti-
zation process allows all transform operations to
be conducted using 16-bit arithmetic. Further,
since transform basis matrix coefficients are all
integers, its implementation at the decoder can be
exact eliminating problems due to potential
encoder/decoder accuracy mismatch as maybe
the case with DCT. To allow ease of comparison
with other well known transforms, we have
included transform scaling factors in the basis
matrices in Table 9 which shows not only the 4� 4
transform employed by H.264 (known in literature
as the high correlation transform (HCT)) [1,2,5,7]
but also other closely related 4� 4 transforms [5]
such as the Walsh Hadammard transform (WHT),
the Slant transform, and the DCT transform. As
can be seen the HCT transform represents an
approximation of the DCT transform similar to
the Slant transform; if the scale factors are
removed, the HCT transform is however simpler
to implement as its coefficients are simply 1’s
and 2’s.

Regarding the transform used, two issues of
interest are: the block size, and the transform
itself. In general, larger the block size used for
transform, better it would be for exploiting global
correlations, on the other hand, the smaller the
block size used for the transform, better it would

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 815
be for exploiting local adaptivity in content.
In addition, smaller block sizes are beneficial for
reducing implementation complexity. Thus, the
8� 8 transform block size chosen by earlier
standards reflects a tradeoff of conflicting require-
ments. Further, the transform block size should
either match motion compensation block size or at
the very least be no larger than the size of the
smallest motion compensation block size (8� 8 in
H.263 and MPEG-4); if this condition is not met,
spurious block edge artifacts from motion com-
pensation would increase transform coding cost. If
transform block size is reduced, normally addi-
tional inefficiencies are introduced in entropy
coding as frequency of end-of-block symbols that
mark end of significant coefficients along a scan
path, increase, costing extra overhead bits. Since
H.264/MPEG-4 AVC relies on many block sizes
for prediction the smallest being 4� 4, and further
since the goal is to keep decoding complexity low,
it uses a 4� 4 transform. Of course, in order for
this transform block size to be efficient in
compression efficiency, more efficient ways of
representing end of block implicitly had to be
devised. Further, H.264 does not rely heavily on
transform for decorrelation so 4� 4 block size
works acceptably. However, use of 4� 4 block
transform does require use of loop filter to reduce
the appearance of grid structure at low bit-rates.

For clarity, we rewrite the basis matrix of [HCT]
of 4� 4 HCT transform of Table 9(c) taking out
multipliers of each row as follows:

½HCT � ¼

1=2

1=
ffiffiffiffiffi
10

p
1=2

1=
ffiffiffiffiffi
10

p

0
BBBB@

1
CCCCA

1 1 1 1

2 1 �1 �2

1 �1 �1 1

1 �2 2 �1

2
6664

3
7775:

As a reminder, the 2D forward transform
process using aforementioned basis matrix assum-
ing [S] is a 4� 4 block of residue pixels to be
transformed and [C] is the 4� 4 block of resulting
coefficients, can be written as follows:

½C� ¼ ½HCT�½S�½HCT�T

Further, all scale factors resulting from this
operation can be absorbed in the quantization
process to integer accuracy.
4.2. Scan, transform and quantization

As explained earlier H.264/MPEG-4 AVC uses
a 4� 4 transform for coding of residue blocks. In
case of intra coding, the transform operation is
applied in two stages. The transform itself is often
referred to as an ‘‘integer’’ transform. The term
‘‘integer’’ refers to the fact that the multiplication
constants are specified as integers, and implemen-
tations are required to follow the exact values
specified, unlike the 8� 8 DCT used in prior
coding standards. The primary transform is
similar to a DCT with the terms quantized to fit
into small integers, but the order is modified
somewhat. The details were derived following the
motivation to achieve an exactly invertible combi-
nation of transform and quantization, while limit-
ing the arithmetic accuracy to 16-bit operations.

The second stage transforms are applied to the
DC components of the first stage transform when
16� 16 intra prediction is employed. The DC level
transform is 4� 4 for luma, and 2� 2 for chroma
due to the 4:2:0 sampling. The DC transforms are
Hadammard transforms in both cases.

H.264/MPEG-4 AVC due to use of small block-
sizes is effectively able to reduce artifacts known as
‘‘ringing’’.

4.2.1. Scan

In MPEG-2 video, the 8� 8 DCT coefficients
can be scanned by the zig–zag scan to generate
run-level events that are VLC coded. The zigzag
scan works well on average and can be looked
upon as a combination of three types of scans, a
horizontal type of scan, a vertical type of scan and
a diagonal type of scan. Often in natural images,
on a block basis, a predominant preferred direc-
tion for scanning exists depending on the orienta-
tion of significant coefficients; MPEG-4 part-2
video uses adaptive scanning to exploit this
property. In addition to the zig–zag scan, another
scanning direction, called the alternate scan, was
also specified in MPEG-2 for more efficient
scanning of coefficients to produce (run, level)
events that can be efficiently entropy coded as
compared to scanning by zig–zag scan alone. The
alternate scan is often used in MPEG-2 for block
scanning of DCT coefficients of interlaced video.

ARTICLE IN PRESS

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Fig. 16. Zig–zag scan used to scan frame macroblocks.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849816
However in H.264/MPEG-4 AVC fixed scan-
ning is employed. The 4� 4 zigzag scan given in
Fig. 16 appears to be fairly efficient for coding of
coefficients of frame-based 4� 4 transform, while
the field scan (discussed in Section 4.3) is efficient
for coding of coefficients of field-based 4� 4
transform.

For the 2� 2 transform for Chroma DC, the
coefficients are scanned in the raster order.

4.2.2. Inverse transform operation for intra dc

with 16� 16 prediction

Inverse luma DC transform is a 4� 4
Hadammard transform specified by
f ¼

1 1 1 1

1 1 �1 �1

1 �1 �1 1

1 �1 1 �1

2
6664

3
7775

c00 c01 c02 c03

c10 c11 c12 c13

c20 c21 c22 c23

c30 c31 c32 c33

2
6664

3
7775

1 1 1 1

1 1 �1 �1

1 �1 �1 1

1 �1 1 �1

2
6664

3
7775:
Inputs to this transform are coefficient level
values for luma DC transform coefficients of
Intra 16� 16 macroblocks as a 4� 4 array c of
elements cij ; where i and j form a 2-D frequency
index. Outputs of this process are 16 scaled DC
values for luma 4� 4 blocks of Intra 16� 16
macroblocks as a 4� 4 array dcY of elements
dcYij.
LevelScaleðm; i; jÞ
Inverse chroma DC transform is a 2� 2
Hadammard transform specified by

f ¼
1 1

1 �1

� �
c00 c01

c00 c11

� �
1 1

1 �1

� �
:

Inputs to this transform are coefficient level
values for chroma DC transform coefficients of
one chroma component of the macroblock as a
2� 2 array c of elements cij ; where i and j form a
2-D frequency index. Here, ‘i’ refers to the row
index within the matrix and ‘j’ refers to the column
index within the matrix. Outputs of this process
are four scaled DC values as a 2� 2 array dcC of
elements dcCij.

4.2.3. Inverse quantization operation

Inverse quantization is performed by using
quantization parameter (QP) specified for each
MB in H.264/MPEG-4 AVC standard. QPC is the
QP that is used for quantizing chroma blocks (and
sub blocks) while QPY is the QP that is used for
quantizing luma blocks (and sub blocks). Differ-
ential values of QPY is specified for each coded
MB in its header. The values of QPi are derived
from QPY and chroma qp index offset. ‘‘chroma
qp index offset’’ is a parameter present in the
‘‘picture parameter set’’ layer of the bit stream.
QPi ¼MinðMaxð0;QPy

þ chroma qp index offsetÞ; 51Þ:

And QPi is used to calculate QPC as shown in
the Fig. 17. Note that QPi=QPC for QPio30.

The function LevelScale(m, i, j) is specified as
follows:
¼

Vm0 for ði; jÞAfð0; 0Þ; ð0; 2Þ; ð2; 0Þ; ð2; 2Þg;

Vm1 for ði; jÞAfð1; 1Þ; ð1; 3Þ; ð3; 1Þ; ð3; 3Þg;

Vm2 otherwise;

8><
>: ð1Þ

ARTICLE IN PRESS

QPc vs. QPi

25

27

29

31

33

35

37

39

41

29 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

QPi

Q
P

c

QPc

Fig. 17. Relation between QPC and QPi:

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 817
where the first and second subscripts of v are row
and column indices, respectively, of the matrix
specified as:

v ¼

10 16 13

11 18 14

13 20 16

14 23 18

16 25 20

18 29 23

2
666666664

3
777777775
: ð2Þ

As used in Eq. (1), ‘m’ is the row index of the
matrix, v, and v is defined in Eq. (2). The function
LevelScale (m, i, j) defined above is used in the
Inverse scaling procedure as described below.

There are three types of inverse quantiza-
tion procedure that are used for different block
types.

* luma DC block,
* chroma DC block,
* all other chroma/luma AC-only and AC+DC

sub blocks.

In all these equations, i and j form a 2-D
frequency index for coefficients within each sub
block.

Inverse luma DC quantization is performed
according to the following:

* If QPY is greater than or equal to 12, the scaled
result is derived as
dcYij ¼ðfij LevelScale ðQPY%6; 0; 0ÞÞ

{ðQPY=6� 2Þ; i; j ¼ 0;y; 3:

* Otherwise, i.e. QPY o12, the scaled results are
derived as

dcYij ¼ðfij LevelScale ðQPY%6; 0; 0Þ þ 21�QP=6Þ

cð2�QPy=6Þ; i; j ¼ 0;y; 3:

The output of this operation is the matrix dcY.
Inverse chroma DC quantization is performed

according to the following:

* If QPC is greater than or equal to 6, the scaling
result is derived as

dcCij ¼ ðfij LevelScale ðQPC%6; 0; 0ÞÞ

{ðQPC=6� 1Þ; i; j ¼ 0; 1:

* Otherwise (QPC is less than 6), the scaling
results are derived by

dcCij ¼ ðfij LevelScale ðQPC%6; 0; 0ÞÞc1;

i; j ¼ 0; 1:

The output of this operation is the matrix dcC.
Inverse AC quantization is performed according

to the following equation:

wij ¼ ðcij LevelScale ðQP%6; i; jÞÞ{ðQP=6Þ

with i; j ¼ 0;y; 3:

The output of this operation is the matrix w.
It can be seen from the above formula that

the computation QP%6 and QP/6 require
the division operations. However, those divisions
by 6 can be avoided, if so desired, by noting
that QP=6 ¼ ð43�QPÞc8 for all QP in
[0,y,130].

4.2.4. Coefficient assembly and general inverse

transform operation

Merging of DC-only and AC-only sub-blocks is
performed on luma blocks in Intra 16� 16 macro-
blocks and on chroma blocks within a macro

ARTICLE IN PRESS

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fig. 18. Assignment of the indices of dcY to 4� 4 luma blocks.

0 1

2 3

00 01

10 11

Fig. 19. Assignment of the indices of dcC to the 4� 4 chroma

block.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849818
block. Essentially, the DC coefficients from DC-
only sub blocks are inserted into specific locations
in the AC-only sub blocks.

Luma DC-only block is referred to as dcY.
Fig. 18 shows the assignment of the indices of the
array dcY to the various luma AC-only
sub blocks. The two numbers in the small
squares refer to indices i and j corresponding
to dcYij ; and the numbers in large squares
refer to luma4� 4BlkIdx of the luma AC-only
sub blocks.

Chroma DC-only block is referred to as dcC.
Fig. 19 shows the assignment of the indices of the
array dcC to the various chroma AC-only sub
blocks. The two numbers in the small squares refer
to indices i and j in dcCij ; and the numbers in large
squares refer to chroma4� 4BlkIdx of the chroma
AC-only sub blocks.

The following 4� 4 transform is used to convert
the block of quantized coefficients to a block of
output samples:

x0
00 x0

01 x0
02 x0

03

x0
10 x0

11 x0
12 x0

13

x0
20 x0

21 x0
22 x0

23

x0
30 x0

31 x0
32 x0

33

2
6664

3
7775 ¼

1 1 1
1

2

1
1

2
�1 �1

1 �
1

2
�1 1

1 �1 1 �
1

2

2
66666666664

3
77777777775

�

w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33

2
6664

3
7775

�

1 1 1 1

1
1

2
�
1

2
�1

1 �1 �1 1
1

2
�1 1 �

1

2

2
666664

3
777775

Finally, the inverse transformed coefficients are
normalized with

xij ¼ x0
ij þ 25

� �
c6

to obtain the residual sample values.

4.3. Interlace video coding tools

If video is captured in interlaced form then each
frame is comprised of a pair of fields—an even
field, and an odd field, such that there is a time
delay of half the frame duration between these
fields. As the fields are captured with a time delay,
the visual information in the adjacent lines of the
two fields tends to get less correlated, especially if
objects in the scene are moving fast. Therefore, the
regions or the frames that contain moving objects
may be more efficiently compressed by compres-
sing the two fields separately. In this standard, the
decision of whether to compress the two fields
separately or not can be made either at the frame

ARTICLE IN PRESS

16 16

32 32::

(a) (b)

Fig. 20. Adaptive field frame (a) pair (16� 32) of frame

macroblocks, (b) pair (16� 32) of field macroblocks. Solid

lines belong to the even field and dotted lines belong to the

odd fields.

0 2 8 12

15 9 13

3 6 10 14

4 7 11 15

Fig. 21. Alternate scan used for scanning of field macroblocks.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 819
level or at macroblock-pair level. When the
decision is made at the frame level then entire
frame is split into two fields and they are
compressed separately. This is also referred as
PicAFF (picture adaptive field frame) coding.
When the decision is made at macroblock pair
(16� 32) level—then the two vertically aligned
macroblocks can either be split into two and
compressed as two separate fields or kept together
and compressed as one single frame (see Fig. 20).
When the decision is made at macroblock pair
level, the coding type of the macroblock is referred
to as MBAFF (MacroBlock Adaptive Field/
Frame).

Notice that, unlike MPEG-2, in MBAFF the
field/frame decision is made at macroblock pair
level and not at each macroblock level. In this
process, if a macroblock pair (16� 32) is split into
two fields it results in two 16� 16 size macroblocks
where each is compressed by using the tools
available in normal coding (with appropriate
modifications in tools like motion estimation/
compensation, motion vector prediction, predic-
tion of intra prediction modes, zig–zag scan,
deblocking filter, and context modeling in CA-
BAC). Motion can now be estimated between
fields and frames. Therefore pixels and motion
vectors need to be re-sized accordingly. Zig–zag
scan (discussed earlier) is used when a macroblock
is frame coded, and an alternate scan (see Fig. 21)
more efficient for field coding is used when a
macroblock is field coded. As an example, if
MBAFF is selected and if the MB-pair is coded in
frame mode, the zig–zag scan is used, and if a MB-
pair is coded in field mode, then alternate scan
is used.

As mentioned earlier, the decision of frame vs.
field adaptation can also be done at frame level
and is referred to as PicAFF. During the develop-
ment of the standard it was reported that PicAFF
provides significant gain of around 15% over
frame coding for complex sequences with signifi-
cant motion activity. In addition, it was also
reported that MBAFF provides additional useful
gain for scenes with mixed motion where some
objects are stationary while others move.

4.4. Deblocking loop filter

In the H.264/MPEG-4 AVC video coding
standard, there are two sources that can introduce
blocking artifacts. The most significant one is the
integer 4� 4 transform in intra and inter frame
prediction residue coding. Coarse quantization of
the transform coefficients can cause visually
disturbing discontinuities at the block boundaries.
The second source of blocking artifacts is motion
compensated prediction. Motion compensated
blocks are generated by copying interpolated pixel
data from different locations of possibly different
reference frames. Since there is almost never a
perfect fit for this data, discontinuities on the edges
of the copied blocks of data typically arise.
Additionally, in the copying process, existing edge
discontinuities in reference frames are carried into

ARTICLE IN PRESS

A MB pair

1

2

3

4

5

0

Fig. 22. Partitioning of decoded picture into MB pairs, and

scanning order of MB pairs.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849820
the interior of the block to be compensated.
Although the 4� 4 transform size used in H.264/
MPEG-4 AVC somewhat makes the artifact less
visible, a deblocking filter is still a useful tool to
enhance coding performance.

There are two main approaches in integrating
deblocking filters into video codecs. Deblocking
filters can be used either as post filters or loop
filters. Post filters only operate on the display
buffer outside of the coding loop, and thus are not
a normative part of the standard. Because their use
is optional, post-filters offer maximum freedom for
decoder implementations. On other hand, loop
filters operate within the coding loop. That is, the
filtered frames are used as reference frames for
motion compensation of subsequent coded frames.
This forces a standard conformant decoder to
perform filtering identical to that at the encoder in
order to prevent drift.

In the post-filtering approach, the frame is
typically decoded into a reference frame buffer
and filtered prior to passing it to the display
device; some implementation of this may require
an additional frame buffer. In the loop-filtering
approach, however, filtering maybe carried out for
each MB during the decoding process, and the
filtered output stored directly to the reference
frame buffers.

Using the loop filtering has several advantages
over post filtering as follows:

* The requirement of a loop filter ensures a
certain level of quality. With a loop filter in the
codec design, content providers can safely
assume that the video is processed by proper
deblocking filters, guaranteeing the quality level
expected by the producer.

* There is no need for potentially an extra frame
buffer at the decoder.

* Empirical tests have shown that loop filtering
typically improves both objective and subjective
quality of video streams. Quality improvements
are mainly due to the fact that filtered reference
frames offer higher quality prediction for
motion compensation.

In the H.264/MPEG-4 AVC design, a condi-
tional filtering can be applied to all 4� 4 block
edges of a picture, except edges at the boundary of
the picture and any edges for which the deblocking
filter process is disabled explicitly by bitstream
parameters. This filtering process can be per-
formed on a MB basis, with all MBs in a
picture processed in the order of increasing
MB addresses. When MBAFF is disabled,
this order is the same as the raster scan order of
all the macroblocks across the whole picture. In
MBAFF mode, the partition of the picture into
MB-pairs and the process order are depicted in
Fig. 22. The highlighted area in the picture shows
one MB pair. The numbers and the zigzagged line
with ending arrow indicate the scanning order of
the MB pairs.

Prior to the operation of the deblocking filter
process for each MB, the filtered samples of the
MB or MB pair (when MB-AFF is active) above
(if any) and the MB or MB pair to the left (if any)
of the current MB must be available. The
deblocking filter process is invoked for the luma
and chroma components separately. For each MB,
vertical edges are filtered first, from left to right,
and then horizontal edges are filtered from top to
bottom.

4.4.1. Deblocking rules

The luma deblocking filter process is performed
on four 16-sample edges and the deblocking filter
process for each chroma components is performed
on two 8-sample edges, for the horizontal direction
as shown on the left side of Fig. 23 and for the
vertical direction as shown on the right side of the

ARTICLE IN PRESS

Vertical edges
(chroma)

Vertical edges
(luma)

Horizontal edges
(luma)

Horizontal edges
(chroma)

16*16 Macroblock 16*16 Macroblock

Fig. 23. Boundaries in a MB to be filtered (luma boundaries shown with solid lines and chroma boundaries shown with dashed lines).

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 821
same figure. During the filtering process, the
following rules apply:

* Sample values above and to the left of the
current MB that may have already been
modified by the deblocking filter process
operation on previous MBs shall be used as
input to the deblocking filter process on the
current MB and may be further modified during
the filtering of the current MB.

* Sample values modified during filtering of
vertical edges are used as input for the filtering
of the horizontal edges for the same MB.

* Sample values modified during filtering of
previous edges are used as input for the filtering
of the next edge in both vertical and horizontal
filtering directions.

Depending on the picture and MB format, the
filtering can be done in either frame mode or field
mode. In frame mode filtering, deblocking is
performed on the frame samples. In field mode
filtering, deblocking is performed on the field
samples of the same field parity. For internal
edges, where the pixels on both sides of the edge
are all in the same MB, the filter mode naturally
matches the format of the MB: For frame coded
MB, frame mode filtering is used. For field coded
MB, field mode filtering is used.

When MB-AFF is not used, all the MBs in the
whole picture will be coded in the same format,
frame or field. The deblocking filtering for the
whole picture will be in the same mode, including
both the internal edges and the edges on the border
of two adjacent MBs.

When MB-AFF is active, the neighboring MBs
can be coded in different formats. Different
filtering modes may be applied for the same MB
when filtering with its neighboring MBs.

For the vertical edge between two neighboring
MBs (left MB edge), the following rules apply:

* If a frame MB adjacent to another frame MB,
deblocking is performed on the frame samples,
i.e. across the boundary between adjacent frame
MBs as they appear in the frame structure.

* If a field MB pair adjacent to another field MB
pair, deblocking is performed across the
boundaries between field MBs of the same field
polarity. Deblocking is never performed across
the boundary between field MBs of opposite
field polarities.

* If a frame MB pair with a field MB pair to the
left of it, the lines of the field MB pair are
logically reordered into frame order and de-
blocking is performed across the boundaries
between the frame MBs in the frame MB pair
and the result of the reordering from the field
MB pair.

* If a field MB pair with a frame MB pair to
the left of it, the lines of the frame MB pair
are logically reordered into field order and
deblocking is performed across the boundaries

ARTICLE IN PRESS

p0p1p2p3 q0 q1 q2 q3

Fig. 24. Samples across 4� 4 block horizontal or vertical

boundaries used in filtering.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849822
between the field MBs in the field MB pair
and the result of the reordering from the frame
MB pair.

For the horizontal edge between two neighbor-
ing MBs (top MB edge), the following rules apply:

* If a frame MB adjacent to another frame MB,
whether in the same MB pair or a different
MB pair, deblocking is performed on the frame
samples, i.e. across the boundary between
adjacent frame MBs as they appear in the
frame structure.

* If a field MB pair adjacent to another field MB
pair, deblocking is performed across the
boundaries between field MBs of the same field
polarity. Deblocking is never performed across
the boundary between field MBs of opposite
field polarities.

* If a field MB pair with a frame MB pair above
it, deblocking is performed in field mode across
the boundary between the top field MB of the
field MB pair and the top field samples in the
lower frame MB of the frame MB pair above it,
and then deblocking is performed in field mode
across the boundary between the bottom field
MB of the field MB pair and the bottom field
samples in the lower frame MB of the frame
MB pair above it.

* If a frame MB pair with a field MB pair above
it, deblocking is performed in field mode across
the boundary between the upper MB in the
frame MB pair and the top field MB in the field
MB pair above it, and then deblocking is
performed in field mode across the boundary
between the upper MB in the frame MB pair
and the bottom field MB in the field MB pair.
Deblocking is also performed in frame mode
across the boundary between the upper and
lower MBs in the frame MB pair.

Note that for each MB, 3 horizontal luma edges,
1 horizontal chroma edge for Cb, and 1 horizontal
chroma edge for Cr are filtered that are internal to
a MB. When field mode filtering is applied to the
top edges of a frame MB, 2 horizontal luma,
2 horizontal chroma edges for Cb, and 2 hor-
izontal chroma edges for Cr between the frame
MB and the above MB pair are filtered using
field mode filtering, for a total of up to
5 horizontal luma edges, 3 horizontal chroma
edges for Cb, and 3 horizontal chroma edges
for Cr filtered that are considered to be controlled
by the frame MB. In all other cases, at most 4
horizontal luma, 2 horizontal chroma edges for
Cb, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a
particular MB.

4.4.2. Filtering process

The filtering process is applied to a set of
eight samples across a 4� 4 block horizontal or
vertical edge denoted as pi and qi with i= 0,y, 3
as shown in Fig. 24 with the edge lying between p0
and q0.

Content-dependent boundary filtering strength:

For each edge between neighbouring 4� 4 luma
blocks, a boundary strength (Bs) is derived based
on the MB type, reference picture ID, motion
vector and other MB coding parameters (see
Fig. 25). For every edge between two 4� 4
luminance sample blocks, a Bs parameter is
assigned an integer value from 0 to 4. Fig. 25
shows how the value of Bs depends on the modes
and coding conditions of the two adjacent blocks.
Bs indicates the strength of the filtering performed
on the edge including a selection between the three
filtering modes. If Bs is zero, the filtering process is
skipped for the current 4� 4 block edge. When Bs
equals to 4, a ‘‘strong filter’’ will be applied to the
samples across the edge. In the standard mode of
filtering which is applied for edges with Bs from 1
to 3, the value of Bs affects the maximum
modification of the sample values that can be
caused by filtering. The gradation of Bs reflects
that the strongest blocking artifacts are mainly due
to intra and prediction error coding and are to a
somewhat smaller extent caused by block motion
compensation.

In interlaced video, the deblocking filter in a
field MB is applied to the pixels belonging to the

ARTICLE IN PRESS

P1 = p1 + Min (Max (-C0, (p2 +
 (p0 + q0)>>1 - (p1<<1)) >> 1),
 C0)

Deblocking
disabled for all edges

of the slice ?

Deblocking
disabled at edges of the slice

boundaries ?

(P or Q block is intra or in
SI or SP) and MB edge ?

P or Q block
is intra or in
SI or SP ?

P or Q block
is coded ?

No

No

No

No

(Bs=4)

(Bs=3)

(Bs=2)

(Bs=1)

(Bs=0)

Is the edge at the
slice boundary ?

Yes

No

Yes

No

No

Yes

(P and Q using different
reference pictures or different numbers of
MVs) or (absolute difference of MVs >=

4 quater luma frame samples ?

No Yes

P0 = Min (Max(0, p0+ d), 255)
Q0 = Min (Max(0, q0 - d), 255)
where d= Min(Max(-C, (((q0 - p0) << 2

+ (p1 - q1) + 4) >> 3)), C)

Yes

Yes

Yes

Yes

Luma edge ?

Q1 = q1 + Min (Max (-C0, (q2 +
 (p0 + q0)>>1 - (q1<<1)) >> 1),
 C0)

ap < && |p0 - q0| <
((>> 2) + 2) ?

β
α

P0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3
P1 = (p2 + p1 + p0 + q0 + 2) >> 2
P2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3

P0 = (2*p1 + p0 + q1 + 2) >> 2

|p0 - q0| <
&& |p1 - p0| < &&

|q1 - q0| < ?

α

β
β

ap = |p2 - p0|< ?β
aq = |q2 - q0|< ?β

Luma edge ?

Q0 = (q2 + 2*q1 + 2*q0 + 2*p0 + p1 + 4) >> 3
Q1 = (q2 + q1 + q0 + p0 + 2) >> 2
Q2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3

aq < && |p0 - q0| <
((>> 2) + 2) ?

β
α

Q0 = (2*q1 + q0 + p1 + 2) >> 2

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Only P or Q block
is in a field MB pair ? (Bs=1)

Yes

No

Field filtering &&
Horizontal MB edge?

Yes

No

(Bs=3)

Fig. 25. Deblocking Filter Decision Logic.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 823

ARTICLE IN PRESS

Threshold Variable alpha as a
function of Index A

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51
Index A

A
lp

h
a

Threshold Variable Beta as a function
of Index A

0

4

8

12

16

20

1 6 11 16 21 26 31 36 41 46 51

Index A

B
et

a

Fig. 26. Threshold variable a and b as a function of indexA.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849824
same field. Strong filtering (Bs=4) in not used
vertically to filter horizontal macroblock edges in
field macroblocks. Horizontal edges of the MBs
are instead filtered using Bs=3 if current or
neighboring MB is compressed in Intra mode.
This is because field lines are spatially twice as far
apart as frame lines. Vertical edges of the MBs are
filtered using strong filtering if current or neigh-
boring MB is compressed in Intra mode. Addi-
tionally, if current and neighboring MB are in
different, field or frame mode, then some filtering
(Bs=4, 3, 2, or 1) is always done and Bs=0 is
not used.

The Bs values for filtering of chrominance block
edges are not calculated independently, but instead
copied from the values calculated for their
corresponding luminance edges.

Note that Fig. 25 only shows a logical flow
of the deblocking filtering algorithm for
simplicity. An actual implementation can be
different. For example, the condition of q0 � p0j j
oa&& p1 � q0j job&& q1 � p0j job at the top of the
figure could indicate the need to access the pixel
data before calculating the Bs values. The actual
implementation can calculate Bs first and only
access pixel values (to calculate this condition) if
Bs>0.

Threshold for each block edge: Even when the
boundary strength is non-zero, the deblocking
process may not be needed for a particular edge.
This is especially true when there is a real sharp
transition across the edge. Applying the deblock-
ing process to such edge will result in blurry image.
The blocking artifacts are most noticeable in very
smooth region where the pixel values do not
change much across the block edge. Therefore, in
addition to the boundary strength, a filtering
threshold based on the pixel values will be derived.
This threshold will also be used to determine if
deblocking process should be carried for the
current edge.

The threshold variables a and b are specified in
Fig. 26 depending on the values of indexA and
indexB, where the variables indexA and indexB are
derived based on the quantization parameter
values for the MBs containing the samples
p0 and q0. The values of a and b are defined
approximately (i.e. tabulated values according to
the following formula:

a yð Þ ¼
4

5
2y=6 � 1

� �
; b yð Þ ¼

y

2
� 7:

* An adjusted threshold C is determined as
follows.
* For luma block edges,

C ¼ C0þ ððapobÞ?1 : 0Þ þ ððaqobÞ?1 : 0Þ:
* For chroma block edges,

C ¼ C0þ 1:

The threshold C0 is specified in Fig. 27
depending on the values of indexA and Bs.

ARTICLE IN PRESS

0

5

10

15

20

25

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Index A

C
0

Bs=3

Bs=2

Bs=1

C0 as a function of index and Bs

Fig. 27. Value of filter clipping variable C0 as a function of IndexA and Bs.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 825
Details of the filtering process are illustrated in
Fig. 25.
5. Entropy coding

As mentioned earlier, H.264/MPEG-4 AVC
uses a number of techniques for entropy coding:
Golomb codes, context adaptive variable word
length coding (CAVLC), and context adaptive
binary arithmetic coding (CABAC).

5.1. Golomb code and code mapping

The standard uses exponential Golomb (Exp-
Golomb) codes to represent syntax elements of
various types. Exp-Golomb codes follow the
structure illustrated in Fig. 28(a) consisting of a
prefix part (1, 01, 001, 0001,y) and a suffix part
which is a string of bits (x0; x1x0; x2x1x0;y) where
xi are 0 or 1. The number of possible combinations
of xi strings reflect number of codes for a given
prefix code. Each syntax element to be coded in the
bitstream is assigned a type reflecting how data is
to be mapped to codes such as unsigned exponen-
tial, ue(v), signed exponential, se(v), mapped
exponential, me(v), or truncated exponential,
te(v). Fig. 28(b) shows assignment of codewords
to codeNum that are used for ue(v) codes.
Fig. 28(c) shows assignment to signed values of a
syntax element, codeNum, that can then be used
with Fig. 28(b) to assign codewords.

There are yet other types of syntax elements
such as for coded block pattern (CBP) where its
values corresponds to a pattern number such as
47, 31,y,etc; this requires an explicit mapping of
these values to codeNum followed by use of Table
5(b) to look up the actual codeword bitstring
assignment. Such syntax elements are referred to
as mapped exponential me(v) type.

5.2. CAVLC

For compressing quantized transform coeffi-
cients, an efficient VLC method called the context-
based VLC (CAVLC) is employed. In this scheme,
inter-symbol redundancies are exploited by switch-
ing VLC tables for various syntax elements
depending on already transmitted coding symbols.
The CAVLC method, however, may not be fully

ARTICLE IN PRESS

 codeNum syntax element value
 0 0
 1 1
 2 -1
 3 2

4 -2
5 3
6 –3
7 4
8 –4
... ...

 Bit string codeNum
 1 0

 0 1 0 1
 0 1 1 2

 0 0 1 0 0 3
 0 0 1 0 1 4
 0 0 1 1 0 5
 0 0 1 1 1 6
 0 0 0 1 0 0 0 7
 0 0 0 1 0 0 1 8

.. ..

Bitstring form Range
 1 0
 0 1 x1 1-2

 0 0 1 x1 x0 3-6
 0 0 0 1 x2 x1 x0 7-14
 0 0 0 0 1 x3 x2 x1 x0 15-30
0 0 0 0 0 1 x4 x3 x2 x1 x0 31-62

(a) (b) (c)

Fig. 28. (a) Prefix and suffix bitstrings, (b) exp-Golomb bitstrings, (c) mapping for signed exp-Golomb bitstrings.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849826
able to adapt to actual conditional symbol
statistics. Also, symbol probabilities that are
greater than 0.5 are not handled efficiently. This
may at times prevent usage of symbols with a
smaller alphabet size for coding of residual data.
On the positive side, with this method, since VLC
tables for various syntax elements are switched
depending on previous coded syntax elements, the
increased adaptivity allows improved coding in
comparison to schemes using a single VLC table.

Based on the syntax elements present in the bit
stream, the run/level pairs within a block are
obtained. In the CAVLC coded bit streams, the
syntax elements within a coefficient-block (the
coefficient levels, trailing 1 s and run of zeros) are
present in the bit stream from the end of the block
to the first.

In the CAVLC entropy-coding algorithm, the
number of non-zero quantized coefficients (Total-
Coeff) and the actual size and position of the
coefficients are coded separately. After zig–zag (or
alternate field) scanning of transform coefficients,
their statistical distribution typically shows large
values for the low-frequency part decreasing to
small values later in the scan for the high-
frequency part. An example for a typical zig–zag
scan of quantized 4� 4 transform coefficients
could be given as follows:

8; 0; 0; 2; 1; 0; 0;�1; 0; 0; 0; 0; 0; 0; 0; 0:

Based on this statistical behavior, the following
data elements are used to convey information of
quantized transform coefficients for a luma 4� 4
block.

* Number of non-zero coefficients (TotalCoeff):
In the above example, TotalCoeff =4.

* Trailing ones (Trailing Ones): This indicates
the number of (consecutive) non-zero co-
efficients with absolute value equal to 1 at the
end of the scan. In the above example,
Trailing Ones =2.

The above two values (TotalCoeff, Trai-
ling Ones) are coded as a combined event,
called coeff token. One out of five VLC tables
(nC entries) in H.264/MPEG-4 AVC is used based
on the number of coefficients in neighboring
blocks.

* Coding the value of coefficients: The values of
the coefficients are coded. The Trailing Ones
need only sign specification (trailing

ones sign flag) since they are equal to either –1
or +1. Note that the statistics of coefficient
values has less spread for the last non-zero
coefficients than for the first ones. For this
reason, coefficient values are coded in reverse
scan order. In the examples above, 2 is the first
coefficient value to be coded. The coefficients
are coded as, so called, LevelCodes. The sign of
a coefficient is represented as an even number
(for a positive coefficient) or an odd number
(for a negative coefficient) of the LevelCode.
The LevelCode is encoded by using a VLC
(level prefix) table [14].

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 827
Positions of each non-zero coefficient are coded
by specifying the positions of 0s before the last
non-zero coefficient. It is split into two parts:

* total zeros: This codeword specifies the number
of zeros between the last non-zero coefficient of
the scan and its start. In the above example the
value of total zeros (between –1 and 8) is 4.
Since it is already known that TotalCoeff=4,
the number must be in the range between 0
and 12. A VLC table is available for in the
total zeros range between 1 and 15 for all
TotalCoeff.

* run before: This is the number of consecutive
zero-valued transform coefficient levels in the
reverse scan (starting from the last non-zero
valued transform coefficient level, e.g. –1 in the
above example). For each block, run before

specifies zero-runs before the last non-zero
coefficient, i.e. the number of 0s before the last
coefficient is coded. In the above example the
first run before number is 2 (between �1 and 1)
and the next (also the last) run before number is
also 2 (between 2 and 8). A VLC table is also
specified for coding run before [14].

5.3. CABAC

For lossless entropy coding, arithmetic coding is
known to achieve higher efficiency than VLC
coding, albeit at the cost of higher complexity.
Arithmetic coding achieves the coding efficiency
benefits due to its effective use of probability
models of occurrence of symbols, combined with
the capability of coding a string of symbols with a
single codeword. If the coding bits cost of the
symbol string is mapped to individual symbols,
they appear, in effect, to be coded with a high
fractional accuracy in bits whereas VLC coding
can only reach integer bits accuracy per symbol.
This is particularly true for symbols having high
probability (>0.5) of occurrence.

Further, adaptive arithmetic coding by virtue of
adaptive modeling can relatively easily adapt to
changing statistical characteristics of the data to be
coded which is useful in video coding as it offers
flexibility in dealing with larger variety of video
content, and bit-rates. By comparison, adaptive
VLC coding such as that using multiple VLC
tables may still be limited in its ability to adapt to
such conditions. Thus adaptive arithmetic coding
may reduce the risk of mismatch to actual symbol
statistics, performing more often close to entropy
limits than possible with VLCs. This advantage
however comes at the expense of added processing
complexity that may require high precision in
word length, probability estimation and update
computation, and serial nature of many opera-
tions. A number of simplifications exist to reduce
complexity, however, and the resulting coding
efficiency performance may then depend on nature
of simplifications.

5.3.1. CABAC basics

In this standard, an advanced method called
context adaptive binary arithmetic coding, CA-
BAC, is included for entropy coding of syntax
element values. Encoding with CABAC [18]
consists of three stages—binarization, context
modeling and adaptive binary arithmetic coding.
Fig. 29 shows a high level block diagram of
CABAC encoder showing these various stages and
their interdependence.

The syntax elements of H.264/MPEG-4 AVC
may be either binary valued or non-binary multi-
valued. The binarization stage is needed for syntax
elements that are non-binary valued and this step
converts each syntax element in to a unique binary
string composed of 1’s and 0’s referred to as bins.

The next stage is called context modeling in
which a model is selected such that the choice may
depend on previous encoded syntax elements or
bins. After assignment to each bin a context
model, the bin and the model is input to the
binary coding engine.

In the third and the final stage, coding of bin
sequence along with updating of probabilities
takes place.

5.3.2. Binarization

CABAC uses four basic types of tree structured
codes tables for binarization. Since these tables are
rule based, they do not need to be stored. The four
basic types are the unary code, the truncated unary
code, the kth order exp-golomb code, and, the
fixed-length code. Further, there is binarization

ARTICLE IN PRESS

Context
Modeler

Binarization

Probability
Estimator

Coding
 Engine

updt cntxt

updt
 cnts

init tables

gen cntxt

 symb

 cum
 freq

 bin,
model

 bin
 string

Fig. 29. CABAC encoder block diagram.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849828
based on five less structured manually chosen code
tree tables, as well as three binarizations based on
concatenation of the four basic types.

5.3.3. Context modeling

CABAC uses four basic types of context models
based on conditional probability. The first type
uses a context template that includes up to two
past neighbors to the syntax element currently
being encoded. For instance modeling may use a
neighbor immediately before and a immediately
above the current element, and further, the
modeling function may be based on bin-wise
comparison with neighbors. The second type of
context model is used only for syntax elements of
mb type and sub mb type and uses prior coded i-
th bins for coding of ith bin. The third and fourth
types of context models are used for residual data
only and are used for context categories of
different block types. The third type does not rely
on past coded data but on the position in the
scanning path, and the fourth type depends on
accumulated levels.

In addition to these context models, the bins
themselves are assigned fixed probability models
depending on their indices, for use when no
context model of a certain category is available.
Overall, the context modeling process only uses
coded values of past syntax elements of the same
slice.

5.3.4. Adaptive binary coding engine

The arithmetic coding engine used is similar to
that used by other arithmetic coders and generally
involves, based on the probability of a symbol to
be coded to perform recursive subdivision to
fractional accuracy of an existing interval that
initially spans the range from 0 to 1. Since the
multiplication operation used in interval subdivi-
sion is a reason for increased complexity of
arithmetic coders, a multiplication free state
transition table based approach is used by
CABAC. Complexity is reduced by allowing a
simpler coding mode called the ‘bypass mode’.
6. Core encoding issues

6.1. Motion estimation

We now briefly discuss the commonalities and
differences in motion estimation for encoding with
this standard as compared to earlier standards.

6.1.1. Motion estimation search strategy

Exhaustive search motion estimation is a
compute-intensive process although it can yield
better results in terms of reduced overall bit-rate
for coding of residual signal resulting from motion
compensation. Over the past many years, to
reduce the complexity of block motion estimation
search, a number of methods have been designed
such as, using a subset of residual-block pixels in
computing matching criteria, examining a subset
of search points in a number of steps [20,30],
starting search from a prediction motion vector
derived from spatially or temporally adjacent
blocks [20,31], using simpler matching criteria
such as sum of absolute differences (SAD) instead
of mean square error, and, partial search based on

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 829
threshold values of matching criteria to exit the
search etc. In fact, typically, these methods are
even combined to reduce complexity even further.
While in MPEG-4 part 2, two block sizes, 16� 16
and 8� 8 are allowed for motion estimation,
H.264/MPEG-4 AVC allows motion compensa-
tion with many more (16� 16, 16� 8, 8� 16,
8� 8, 8� 4, 4� 8, and 4� 4) block sizes. However
in order to reduce complexity an encoder can very
well choose to use only a subset of block sizes,
performing a tradeoff of coding efficiency and
computational complexity.

For maximum coding gain but at reduced
complexity, JVT’s JM software implementation
of H.264/MPEG-4 AVC starts with a spatial
prediction motion vector as a starting estimate
[13,20,31] and then performs full search along a
spiral path using SAD as a matching criteria for
integer pixel search. In the first step, the search
window is adjusted to make sure that the zero
displacement vector is included in the search. Since
the search is done relative to motion prediction
based on neighboring blocks, the search range
chosen is actually independent of the distance
between the picture being coded and the reference
picture. Further, use of spiral search allows for the
possibility of exiting the search early for some
blocks and still achieving reasonable motion
compensation. Further, since many block sizes
are supported in H.264/MPEG-4 AVC, at each
position in the search, SAD’s are computed for all
16, 4� 4 luminance blocks of a macroblock. The
appropriate SAD values are summed to generate
corresponding bigger blocks such as 4� 8’s,
8� 4’s, 8� 8’s, 16� 8’s, 8� 16’s, and 16� 16.
The search simply saves all partial SAD values
for every integer motion vector candidate position
in search. Despite shortcuts, the JM motion
estimation search is still excessively compute
intensive.

Further, since, typical coding with this standard
may use multiple frames, the search may be
repeated for all reference frames. The number of
frames to use as reference is up to the encoder
within the context of values allowed for a level of a
profile (more on levels in Section 9.2). Another
related issue is that of how many B-frames [25] to
use to allow proper tradeoffs of motion estimation
complexity with coding efficiency benefits. In
H.264/MPEG-4 AVC encoding, aspects related
to a priori block-size reduction in motion estima-
tion to reduce complexity, are discussed in [12],
and shortcuts are addressed in [41]. In general, it is
advisable that before choosing motion estimation
shortcuts, considerable investigation be performed
to determine robust, noise insensitive, solution
that performs well over a wide range of source
material and bit-rates.

6.1.2. 1/4 pel using SATD instead of SAD

In [13] for 1/4 pel search, the last stage in motion
estimation for computing candidate motion vec-
tors, instead of SAD, a more accurate criterion
called sum of absolute transform differences
(SATD) can be used. Basically, the residue block
representing motion compensated errors is 4� 4
Hadammard transformed and the absolute value
of 4� 4 coefficient array is summed at every 1/4
pixel candidate displacement. The location yield-
ing the smallest SATD value of the 1/4 pel
candidates is taken to be the best match and
provides the motion vector at 1/4 pel accuracy
used for motion compensation.

6.1.3. Rate distortion optimized motion vector

decision

The goal of rate distortion optimization for
motion estimation [38,37] is to help select the best
motion vector and reference picture from the
choice of candidate motion vectors and reference
pictures during the block matching motion search.
For every motion vector and reference picture
combination, the coding cost (rate) and the
resulting distortion is first computed. Next, a
lagrange formulation is applied that calculates
the optimum choice by minimizing the following:

D1 mð Þ þ lD � R mð Þ;

where D1 is the distortion measure used, in this
case, sum of absolute prediction difference of the
luminance component, R is total number of bits
for representing motion information, m is the
motion information that includes motion vector
and the picture reference parameter, and lD is the
Lagrange multiplier for motion estimation that
controls the tradeoff of rate with distortion.

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849830
6.2. Rate distortion optimized mode decision

Like in previous standards, in H.264/MPEG-4
AVC, a macroblock can be coded in one of the
many possible modes that are enabled depending
on the picture/slice type. For instance, in the case
of MPEG-4 part 2 video, P-picture coding offers a
choice of up to 6 modes from a set of modes as
follows: {skip, inter, inter with quantizer, inter with

8� 8 motion vectors, intra, intra with quantizer}.
Thus in MPEG-4 for every macroblock in P-
picture a decision needs to be made regarding the
coding mode to be used (this decision is also
required for macroblocks in I- and B-pictures as
well). While, typically in encoding with previous
standards, mode decisions were based on criteria
such as sum of absolute difference (SAD) or sum
of square of difference (SSE), this method of
selecting a mode is not optimum. While admittedly
mode decision is an encoding issue and thus
outside the scope of a standard, it has been shown
[13,35] that additional important gains in coding
efficiency become possible if macroblock mode
decision is performed carefully. Other methods of
mode decision that have been tried include
explicitly counting bits in coding a macroblock in
various modes to select the mode which minimizes
the bit count.

Since H.264/MPEG-4 AVC includes many more
coding modes than that in earlier standards, it is
even more important that the mode decision be
correct otherwise with sub-optimum choices, some
of the coding efficiency benefits of H.264/MPEG-4
AVC coding may be lost. However, as we will see,
thus far the additional gains can be extracted only
at the expense of considerable increase in encoding
complexity.

The goal of rate distortion optimized mode
decision [38,37] is to help select the best block
partitioning as well as inter/intra decision for a
macroblock. First, the coding cost (rate) and the
resulting distortion is computed for all possible
macroblock types (as well as submacroblock
types). Next, a lagrange formulation is applied
that calculates the optimum mode choice by
minimizing the following:

D2 þ lM � RðM jQÞ;
where D2 is the distortion criterion used, in
this case, sum of square of reconstruction
error of the macroblock, R is total number of
bits that includes mode signaling bits,
motion vector coding bits, and transform co-
efficient coding. bits for the macroblock, lM is
the lagrange multiplier for mode decision
that controls the tradeoff of rate with distortion,
Q is the quantizer used for quantization of
coefficients of the macroblock undergoing mode
decision evaluation, and, M is the set of modes
available, as an example, for a P-slice in H.264/
MPEG-4 AVC, the set of potential macroblock
types are

fskip; inter 16� 16; inter 16� 8; inter 8� 16;

inter 8� 8; intra 4� 4; intra 16� 16g

and is applied after first making a similar decision
on submacroblock types. of a macroblock.

The mode decision lagrange multiplier has been
experimentally found to be related to quantizer
parameter as follows:

lM ¼ 0:85� 2QP=3:

Further, the lagrange multiplier for motion is
chosen to relate to the lagrange multiplier for
mode as follows:

lD ¼
ffiffiffiffiffiffiffi
lM

p
:

6.3. Quantizer adaptation and rate control

Rate control is another operation performed
only during encoding and thus is not an issue for
standardization. However very much like motion
estimation and mode decision, it can have a
significant impact on the coded video quality so
it is an important topic nevertheless. While an
important requirement in rate control is to ensure
that on the average, coding bit-rate does not
exceed target bit-rate, this has to be done while
maintaining acceptable video quality. Thus adap-
tive quantization is also closely related to rate
control [26] as adaptation of quantizer used in
transform coding is a common approach to
control rate of generation of bits in video coding.
More successful techniques for rate control have
to be generally aware of characteristics of the

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 831
content, features of video coders, as well as spatial/
temporal quality expectations from an application.
Being aware of codec features typically involves
knowing about, individual picture types (I-, P-,
B- and others) and their bit-rate needs, picture
coding structures [25] that can be derived
from picture types, tradeoffs in motion
coding vs. transform coding, impact of quantizer
adjustment vs. frame dropping etc. Among the
many solutions for rate control available, the
rate control of MPEG-2 Test Model 5 (TM5) [36]
still offers a good starting point and can be
the basis of design for a new, custom rate
controller. The rate controller consists of
three main steps—target bit allocation, virtual
buffer based bit-rate control, and adaptive
quantization. TM5 rate controller while it is a
reasonable starting point, it is also known to
have well-documented shortcomings. This is
usually an issue when coding bit-rates are
rather limited such as that for many applications
of H.264/MPEG-4 AVC standard. For the pur-
pose of showing good coding quality under bit-
rate control with H.264, effort has been put in JM
development to design new rate controllers [12]
suitable for the H.264 standard. However, a rate
controller that achieves good quality is generally
an application dependent issue so it is difficult to
design a single solution that works well for all
types of bit-rates, frame rates, and video material.
Besides, there are several new issues with H.264 as
compared to earlier standards that one needs to be
careful about in designing a rate controller. While
a detailed discussion of such issues is outside of the
scope of this paper, a number of relevant the issues
can be listed as follows.

* Since coding occurs at relatively lower bit-rates,
larger bit-rate fluctuations can occur causing
difficulties in rate control.

* The typical distribution of bits between motion
and texture may cause difficulties in rate control
if only texture bits are controlled. Also the
quantizer precision may not be sufficient for
good rate control for some applications.

* The bit-rates for B-pictures of H.264 being
small (than earlier standards) can add to
difficulties in rate control.
* With changes in quantizer and thus in loop
filtering, spatial/temporal quality variations
may appear as artifacts.

* Quantizer changes need to be carefully re-
stricted based on scene complexity, picture
types, and, coding bit-rate.

* Improper mode decision/reference indexing
tradeoffs can at times cause excessive bits
generated for certain frames.

* Macroblock quantizer or RDopt lambda para-
meter changes can introduce spatial quality
variations in fine texture.
7. Experimental results

While overall the H.264/MPEG-4 AVC stan-
dard provides significant improvement over earlier
standards, often the coding results for the standard
quoted are those achieved by the JM software
implementation. As mentioned earlier, H.264 like
previous standards only specifies a bitstream
syntax and decoding semantics, the encoder
optimizations are really outside of the standard.
However the software does include a variety of
encoding optimization for picture quality, some of
them such as motion estimation, and RD Optimi-
zation (RDOpt) add significantly to complexity.
For design of a practical encoder, often, shortcuts
must be found and so it is essential to understand
the picture quality performance individual tools
and as encoding optimizations/simplifications
provide so that proper performance/complexity
tradeoffs can be made. Towards this end, we
report results of a detailed set of experiments we
have conducted using MPEG standard test
sequences and other test sequences, organized as
three test sets in Table 10. Further, for all our
experiments we have used the public domain JVT
implementation referred to as JM6.1e [13] so that
results are easier to compare with other published
results.

7.1. Motion estimation

7.1.1. Motion vector range

In Table 11, we present results of experiments
with different motion update ranges (with respect

ARTICLE IN PRESS

Table 10

Sequences in each of the three test sets used in experiments and quantizers used in coding

CIF (352� 288, 30 fps) test set Interlaced (704� 480, 30 fps) test set Movie (704� 352, 24 fps) test set

Sequence Num Frm Qi,p,b Sequence Num Frm Qi,p,b Sequence Num Frm Qi,p,b

Mobile 300 30,31,32 Mobile 150 30,31,32 Apollo13.1 96 28,29,30

Tempete 260 30,31,32 Carousel 150 30,31,32 Apollo13.2 149 38,29,30

TableTen(nis) 300 29,29,31 TableTen(nis) 150 29,29,31 Golden(Eye).1 177 29,29,31

FlowerGa(rden) 250 30,31,33 FlowerGa(rden) 150 30,31,33 Golden(Eye).2 83 28,28,30

Bus 150 30,30,32 Bus 150 30,30,32 AnyGiv(enSunday).1 65 31,31,33

Football 150 30,31,32 Football 150 30,31,32 AnyGiv(enSunday).2 54 29,30,32

Stefan 300 30,31,33

Table 11

Motion vector (MV) range experiments on CIF test set while coding using 1 B-pic, 1 Ref pic, spatial direct, RDOpt, and CAVLC,

spatial direct, and RDOpt

Sequence MV range715 MV update range723 MV update range731

Bit-rate (kbps) Y SNR (dB) Bit-rate (kbps) Y SNR (dB) Bit-rate (kbps) Y SNR (dB)

Mobile 740.16 31.01 741.44 (+0.17%) 31.01 741.03 (+0.11%) 31.01

Tempete 580.51 32.11 579.81 (�0.12%) 32.11 578.80 (�0.31%) 32.12

TableTen. 470.08 34.30 468.10 (�0.42%) 34.30 467.34 (�0.58%) 34.30

FlowerGa. 864.40 31.62 863.85 (�0.06%) 31.61 863.58 (�0.09%) 31.62

Bus 717.96 32.82 716.38 (�0.22%) 32.82 715.42 (�0.35%) 32.82

Football 773.89 34.57 732.40 (�5.36%) 34.57 720.68 (�6.87%) 34.58

Stefan 888.46 32.66 779.08 (�12.31%) 32.70 728.50 (�18.00%) 32.70

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849832
to prediction motion vector) while using spiral full

search motion estimation during coding of CIF
test set with JM.

The results show that the differences are
significant only on fast motion sequences such as
Football and Stefan where prediction motion
vectors used in motion estimation may not work
well thus requiring a larger update range. For
subsequent experiments with CIF test set, MV
update range of 16 will be used for Mobile, 23 will
be used for Tempete, TableTennis, FlowerGarden

and Bus, and, a range of 31 will be used for
Football and Stefan.

7.1.2. Without and with Hadammard

Table 12 shows results of experiments without,
and with Hadammard transform used in selection
of the best 1

4
pel motion vector in motion

estimation while coding of CIF test set with JM.
The results show only small statistical differ-
ences, with the largest difference only on Stefan

sequence, however, visually, ‘‘with Hadammard’’
appears preferable and thus it will be used in all
our subsequent experiments.

7.2. Number of B-pictures

Table 13 shows results of experiments with no
B-picture, 1 B-picture, and 2 B-pictures in coding
of CIF test set with JM.

The results show significant reduction in bit-rate
of typically in 9–27% range when 1 B-picture
is used as compared to no B-pictures. While
with chosen quantizers, 1 B-picture produces
lower SNR than the no B-picture case, the
visual quality difference is imperceptible due
to temporal masking benefits of B-pictures.
Further, 2 B-pictures provide an additional gain

ARTICLE IN PRESS

Table 12

Without, and with Hadammard experiments on CIF test set while coding using 1 B-pic, 1 Ref pic, spatial direct, RDOpt, and CAVLC

Sequence Without Hadammard With Hadammard

Bit-rate (kbps) Y SNR (dB) Bit-rate (kbps) Y SNR (dB)

Mobile 735.73 30.93 740.16 (+0.60%) 31.01

Tempete 575.04 32.03 579.81 (+0.83%) 32.11

TableTen. 466.66 34.24 468.10 (+.0.31%) 34.30

FlowerGa. 863.80 31.56 863.85 (+0.00%) 31.61

Bus 712.90 32.75 716.38 (+0.49%) 32.82

Football 719.93 34.53 720.68 (+0.10%) 34.58

Stefan 736.21 32.64 728.50 (�1.05%) 32.70

Table 13

No B-pic, 1 B-pic, 2, B-pic comparison experiments on CIF test set while coding using 1 Ref pic, spatial direct, RDOpt, and CAVLC

Sequence No B-pic 1 B-pic 2 B-pic

Bit-rate (kbps) Y SNR (dB) Bit-rate (kbps) Y SNR (dB) Bit-rate (kbps) Y SNR (dB)

Mobile 1106.98 31.12 740.16 (�33.14%) 31.01 631.73 (�42.93%) 30.80

Tempete 791.57 32.24 579.81 (�26.75%) 32.11 517.98 (�34.56%) 31.90

TableTen. 583.15 34.41 468.10 (�19.73%) 34.30 433.27 (�25.70) 34.16

FlowerGa. 1132.73 32.02 863.85 (�23.74%) 31.61 765.65 (�32.41%) 31.23

Bus 886.97 33.08 716.38 (�19.23%) 32.82 665.19 (�25.00%) 32.58

Football 761.27 34.77 720.68 (�5.33%) 34.58 712.99 (�6.34%) 34.34

Stefan 803.07 33.05 728.50 (�9.29%) 32.70 667.94 (�16.835) 32.40

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 833
typically in 6–9% range with further reduction in
SNR but with hardly any reduction in visual
quality.

7.3. Number of reference pictures

Table 14 shows results of experiments with 1
reference picture, 2 reference pictures, 3 reference
pictures, and 5 reference pictures while using 1 B-
picture in coding of CIF test set with JM. A
clarification is in order of how to interpret the
terminology used such as ‘‘p Ref, q B-pic’’ used in
this as well as many subsequent tables, particularly
since, for example, the term such as ‘‘1 Ref, 1 B-
pic’’ can be confusing. Basically, as one would
expect, all B-pictures used, employ a prediction in
backward direction and a prediction in forward
direction. As in coding with earlier standards, one
decoded future picture is used to provide back-
ward prediction. Unlike previous standards, for-
ward prediction uses one of ‘p’ choices of pictures
such that the best reference is chosen on a MB
basis. Further, prediction in P-pictures is per-
formed similar to prediction in forward prediction
mode of B-pictures, i.e., choosing on a MB basis
best reference picture from a choice of ‘p’
references. As mentioned earlier, we use JM
software for our coding experiments, and we
believe this is how the JM6.1e software was
designed to work as it allows independent selection
of ‘p’ and ‘q’.

The results show that when two reference
pictures are used instead of one, typical bit-rate
reduction is around 2.5–3% but for sequences with
background that remains similar, it can be as high
as 7%; 1 B-picture coding is used. Further, if 5
reference pictures are used instead of 1, typical
gains could be in 5% range, and for sequences with

ARTICLE IN PRESS

Table 14

1 Ref pic, 2 Ref pic, 3 Ref pic, and 5 Ref pic comparison experiments on CIF test set while coding using 1 B-pic, spatial direct, RDOpt,

and CAVLC

Sequence 1 Ref, 1 B-pic 2 Ref, 1 B-pic 3 Ref, 1 B-pic 5 Ref, 1 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 740.16 31.01 693.53 (�6.29%) 31.18 676.57 (�8.59%) 31.25 664.04 (�10.28%) 31.35

Tempete 579.81 32.11 537.97 (�7.22%) 32.27 531.94 (�8.26%) 32.34 524.88 (�9.47%) 32.40

TableTen. 468.10 34.30 456.28 (�2.53%) 34.34 452.45 (�3.34%) 34.36 445.56 (�4.81%) 34.38

FlowerGa. 863.85 31.61 834.15 (�3.44%) 31.68 824.45 (�4.56%) 31.71 814.65 (�5.69%) 31.73

Bus 716.38 32.82 699.92 (�2.29%) 32.88 698.74 (�2.46%) 32.89 697.57 (�2.63%) 32.90

Football 720.68 34.58 714.61 (�0.84%) 34.57 714.07 (�0.92%) 34.57 710.99 (�1.34%) 34.57

Stefan 728.50 32.70 709.11 (�2.66%) 32.77 697.62 (�4.24%) 32.78 697.91 (�4.20%) 32.80

Table 15

1 Ref pic, 2 Ref pic, 3 Ref pic, and 5 Ref pic comparison experiments on CIF test set while coding using 2 B-pic, spatial direct, RDOpt,

and CAVLC, with JM6.1e

Sequence 1 Ref, 2 B-pic 2 Ref, 2 B-pic 3 Ref, 2 B-pic 5 Ref, 2 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 631.73 30.80 610.44 (�3.37%) 30.96 602.91 (�4.56%) 31.03 597.84 (�5.36%) 31.11

Tempete 517.98 31.90 491.95 (�5.02%) 32.05 488.70 (�5.65%) 32.11 486.71 (�6.03%) 32.15

TableTen. 433.27 34.16 425.41 (�1.81%) 34.17 422.82 (�2.40%) 34.19 417.17 (�3.715) 34.22

FlowerGa. 765.65 31.23 750.87 (�1.93%) 31.29 745.66 (�2.61%) 31.32 737.68 (�3.66%) 31.34

Bus 665.19 32.58 657.58 (�1.14%) 32.61 658.70 (�0.97%) 32.63 656.35 (�1.33%) 32.63

Football 712.99 34.34 710.04 (�0.41%) 34.33 709.66 (�0.47%) 34.33 708.76 (�0.59%) 34.34

Stefan 667.91 32.40 677.75 (+1.43%) 32.44 668.94 (�1.47%) 32.46 672.49 (+0.70%) 32.46

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849834
background that remains similar, gains could be as
high as 10%.

Table 15 shows results of experiments with 1
reference picture, 2 reference pictures, 3 reference
pictures, and 5 reference pictures while using 2
B-pictures in coding of CIF test set.

The results show, lower improvements
when many reference pictures are used with 2
B-picture coding as compared to 1 B-picture
coding. When 2 reference pictures are used instead
of 1, typical bit-rate reduction is in the range of 1–
2% but for sequences with background that
remains similar, it can be as high as 5%; 2 B-
pictures are used in coding. Further, if 5 reference
pictures are used instead of 1, typical gains could
be around 3.5%, and for sequences where back-
ground remains similar, the gains could be around
5.5–6%. A note of caution: for more complex
sequences with fast motion when using 2 B-
pictures, there may be no gains unless mode
decisions are perfect.

7.4. All MB vs. no sub8� 8 MC modes

In Table 16, we present results of experiments
with all MB partitions for motion compensation,
with no smaller than 8� 8 blocks (no sub8� 8) in
coding of CIF test set with JM.

The results show that with 5 references and 1
B-picture, if no sub8� 8 MC modes are used instead
of all MC modes, typically 1–3% increase in bit-rate
results, but could be as high as 5%. Further, with 3
references and 2 B-picture, if typically, 1–5% increase
in bit-rate results, but could be as high as 6%.

ARTICLE IN PRESS

Table 16

All MB vs. no sub8� 8 MC modes experiments on CIF test set while coding using either 1 B-pic and 5 Ref, or, 2 B-pic and 3 Ref,

spatial direct, RDOpt, and CAVLC

Sequence

and Qi, p, b

All MB MC modes, 5

Ref, 1 B-pic

No sub8� 8 block MC

modes, 5 Ref, 1 B-pic

All MB MC modes, 3

Ref, 2 B-pic

No sub8� 8 block MC

modes, 3 Ref, 2 B-pic

Bit-rate

kbps

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 664.04 31.35 670.83

(+1.02%)

31.21 602.91 31.03 615.61

(+2.11%)

30.91

Tempete 524.88 32.40 525.02

(+0.03%)

32.26 488.70 32.11 492.90

(+0.86%)

31.99

TableTen. 445.56 34.38 450.18

(+1.04%)

34.30 422.82 34.19 427.83

(+1.18%)

34.12

FlowerGa. 814.65 31.73 854.52

(+4.89%)

31.56 745.66 31.32 787.70

(+5.64%)

31.16

Bus 697.57 32.90 705.79

(+1.18%)

32.79 658.70 32.63 669.63

(+1.57%)

32.52

Football 710.99 34.57 715.89

(+0.69%)

34.56 709.66 34.33 714.98

(+0.75%)

34.33

Stefan 697.91 32.80 718.92

(+3.01%)

32.68 668.94 32.46 707.66

(+5.79%)

32.34

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 835
7.5. RDOpt vs. non-RDOpt mode selection

Table 17 presents results of experiments with
and without RDOpt mode selection on CIF test
set coded with JM.

The results show that ‘‘no RDOpt’’ as compared
to ‘‘RDOpt’’ for the case of 5 References and 1 B-
picture results in 6.5%–13% increase in bit-rate.
Further, with 3 references and 2 B-picture,
typical increase in bit-rate may be in the range of
10%–22%.

7.6. Spatial vs. temporal direct mode

Next, in Table 18, we present results of
experiments comparing Spatial Direct mode and
Temporal Direct mode for B-pictures using CIF
test set coded with JM.

The results show that comparison of temporal
direct mode with spatial direct mode for the case
of 5 References and 1 B-picture, performs in the
range of nearly the same (70.5%) to slight
increase (3%) in bit-rate on this test set. Further,
with 3 references and 2 B-picture, variations in its
performance may lie over a wider range, e.g., 3.5%
reduction in bit-rate to 5% increase in bit-rate.
Possibly, temporal direct may perform better on
lower detailed scenes at lower coding bit-rates
where higher quantizer values are used.

7.7. Loop filter on vs. loop filter off

In Table 19 we show results of experiments with
and without loop filter in coding of CIF test set
with JM.

The results show that the case of ‘‘no loop filter’’
as compared to having ‘‘default loop filter’’
performs very close, mainly produces bit-rate
higher by up to 1%, but at the most 2% higher
in bit-rate. So, at least, the bit-rate savings from
loop filter is not significant. Since the main
purpose of loop filter is in blockiness reduction,
as expected, its benefit is in improvement of visual
quality, especially when bit-rates are lower.

7.8. CAVLC vs. CABAC

Results of experiments comparing CAVLC with
CABAC in coding of CIF test set with JM are
shown in Table 20.

The results show that with ‘‘CAVLC’’ as
compared to ‘‘CABAC’’ for the case of 5

ARTICLE IN PRESS

Table 17

With RDOpt and no RDopt experiments on CIF test set with coding using either 1 B-pic and 5 Ref, or, 2 B-pic and 3 Ref, spatial

direct, and CAVLC

Sequence and

Qi; p; b
With RDOpt, 5 Ref,

1 B-pic

No RDOpt, 5 Ref,

1 B-pic

With RDOpt, 3 Ref,

2 B-pic

No RDOpt, 3 Ref,

2 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate (kbps) Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 664.04 31.35 752.59

(+13.33%)

31.40 602.91 31.03 737.12

(+22.26%)

31.22

Tempete 524.88 32.40 593.28

(+13.03%)

32.45 488.70 32.11 594.27

(+21.60%)

32.28

TableTen. 445.56 34.38 476.57

(+6.96)

34.30 422.82 34.19 466.39

(+10.17%)

34.17

FlowerGa. 814.65 31.73 861.82

(+5.79%)

31.77 745.66 31.32 821.52

(+10.17%)

31.47

Bus 697.57 32.90 743.12

(+6.53%)

32.85 658.70 32.63 726.92

(+10.36%)

32.67

Football 710.99 34.57 782.27

(+10.03%)

34.67 709.66 34.33 797.45

(+12.37%)

34.55

Stefan 697.91 32.80 708.08

(+1.46%)

32.81 668.94 32.46 738.38

(+10.38%)

32.54

Table 18

Spatial direct and temporal direct mode comparison experiments on CIF test set with coding using either 1 B-pic and 5 Ref, or, 2 B-pic

and 3 Ref, RDOpt, and CAVLC

Sequence

and Qi, p, b

Spatial direct, 5 ref,

1 B-pic

Temporal direct, 5 ref,

1 B-pic

Spatial direct, 3 ref,

2 B-pic

Temporal direct, 3 ref,

2 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 664.04 31.35 685.81

(+3.28%)

31.31 602.91 31.03 609.14

(+1.03%)

31.00

Tempete 524.88 32.40 527.45

(+0.49%)

32.38 488.70 32.11 471.87

(�3.44%)

32.11

TableTen. 445.56 34.38 443.89

(�0.37%)

34.38 422.82 34.19 423.60

(+0.18%)

34.20

FlowerGa. 814.65 31.73 821.71

(+0.87%)

31.75 745.66 31.32 743.03

(�0.35%)

31.33

Bus 697.57 32.90 693.11

(�0.64%)

32.89 658.70 32.63 653.70

(�0.76%)

32.63

Football 710.99 34.57 725.83

(+2.08%)

34.63 709.66 34.33 738.53

(+4.07%)

34.43

Stefan 697.91 32.80 720.60

(+3.25%)

32.8 5 668.94 32.46 701.58

(+4.88%)

32.56

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849836
References and 1 B-picture, average reduction in
bit-rate is around 6.8%. Typical values lie in range
of 5–6.5%, reaching 8% in one case and over 10%
in another case. For the case of 3 references and
2 B-pictures the results are similar, with average
reduction in bit-rate over CAVLC found to be
7.2%. The performance of CABAC may be higher
for much simpler scenes but such scenes are

ARTICLE IN PRESS

Table 19

Loop filter vs. no loop filter comparison experiments on CIF test set with coding using either 1 B-pic and 5 Ref, or, 2 B-pic and 3 Ref,

RDOpt, and CAVLC

Sequence Loop filter, 5 ref,

1 B-pic

No loop filter, 5 ref,

1 B-pic

Loop filter, 3 ref,

2 B-pic

No loop filter, 3 ref,

2 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 664.04 31.35 665.27

(+0.19%)

31.30 602.91 31.03 606.19

(+0.54%)

30.99

Tempete 524.88 32.40 528.30

(+0.65%)

32.39 488.70 32.11 490.11

(+0.29%)

32.07

TableTen. 445.56 34.38 452.02

(+1.45%)

34.41 422.82 34.19 427.54

(+1.11%)

34.23

FlowerGa. 814.65 31.73 814.19

(�0.06%)

31.72 745.66 31.32 744.62

(�0.14%)

31.31

Bus 697.57 32.90 703.36

(+0.83%)

32.66 658.70 32.63 662.27

(+0.54%)

32.60

Football 710.99 34.57 722.57

(+1.63%)

34.53 709.66 34.33 719.60

(+1.40%)

34.28

Stefan 697.91 32.80 697.37

(�0.08%)

32.74 668.94 32.46 681.61

(+1.89%)

32.38

Table 20

CAVLC vs CABAC comparison experiments on CIF test set with coding using either 1 B-pic and 5 Ref, or, 2 B-pic and 3 Ref, and

RDOpt

Sequence CAVLC, 5 ref, 1 B-pic CABAC, 5 ref, 1 B-pic CAVLC, 3 ref, 2 B-pic CABAC, 3 ref, 2 B-pic

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 664.04 31.35 626.94

(�5.6%)

31.43 602.91 31.03 569.42

(�5.6%)

31.13

Tempete 524.88 32.40 499.81

(�4.8%)

32.47 488.70 32.11 462.89

(�5.3%)

32.17

TableTen. 445.56 34.38 419.31

(�5.9%)

34.40 422.82 34.19 396.34

(�6.3%)

34.22

FlowerGa. 814.65 31.73 727.92

(�10.6%)

31.81 745.66 31.32 666.22

(�10.7%)

31.40

Bus 697.57 32.90 656.05

(�5.9%)

32.95 658.70 32.63 617.28

(�6.3%)

32.69

Football 710.99 34.57 663.69

(�6.7%)

34.72 709.66 34.33 666.62

(�6.1%)

34.45

Stefan 697.91 32.80 641.14

(�8.1%)

32.87 668.94 32.46 600.01

(�10.3%)

32.52

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 837
usually not hard to code. Another case where
CABAC’s performance may be higher is when bit-
rates are rather low, or in other words, large
quantizer step sizes are used. In such a coding
scenario, resulting quality may not be that good
regardless.

ARTICLE IN PRESS

Table 21

Frame mode, Field mode, Pic AFF mode and MB AFF mode comparison experiments on interlaced 4:2:0 test set while coding using 3

Ref pic, 2 B-pic, spatial direct, RDOpt, and CAVLC

Sequence Frame Field PicAFF MBAFF

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Mobile 2133.84 31.10 2115.42 (�0.86%) 30.89 2005.15 (�6.03%) 31.08 1887.88 (�11.53%) 31.20

Carousel 4620.54 32.19 3307.84 (�28.41%) 32.66 3297.01 (�28.64%) 32.64 3143.61 (�31.96%) 32.66

TableTen. 2157.62 32.70 1991.05 (�7.72%) 32.53 1898.15 (�12.02%) 32.74 1856.20 (�13.97%) 32.78

FlowerGa. 2989.56 31.00 2945.73 (�1.47%) 30.92 2594.88 (�13.20%) 31.08 2569.45 (�14.05%) 31.14

Bus 2719.76 32.27 2160.37 (�1.47%) 32.63 2058.34 (�24.32%) 32.64 1983.15 (�27.08%) 32.75

Football 2688.56 33.61 1853.68 (�31.05%) 34.21 1841.43 (�31.51%) 34.19 1791.07 (�33.38%) 34.23

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849838
7.9. Interlaced video coding

We now present results of experiments with
tools especially designed for efficient coding of
interlaced video. Table 21 shows a comparison of 4
potential modes: frame, field, Pic adaptive frame/
field, and macroblock adaptive frame/field for
coding of interlaced video.

The results exhibit a strong dependence on
motion and details in the interlaced video sequence
being coded. For very detailed scenes with slow
motion (e.g. Mobile), picture-based frame or
picture-based field modes perform similarly and
PicAFF provides half of the improvement possible
with MBAFF. Thus MBAFF is quite useful for
such scenes. For scenes with medium trackable
motion and medium to high details (e.g. Flower-
Garden, Bus) while field mode performs similar to
frame mode, PicAFF is able to achieve nearly all
the improvement possible, and MBAFF provides
small additional improvement. For scenes with
fast motion and low to medium details (e.g.
Carousel, Football) field mode provides most of
the improvement and the performance of PicAFF
mode is identical to the field mode, with MBAFF
providing small additional improvement. In a
mixed sequence with two very different subscenes
(e.g. TableTennis), field coding achieves over half
of the total gains, with PicAFF able to achieve
most of the gains.

Overall, PicAFF is able to achieve a significant
portion of the gain available. MBAFF provides
additional SNR gain or bit-rate saving gain for
sequences with scenes containing mixed (moving
and static) regions. However, gain for MBAFF
tends to be more local in nature and thus more
noticeable in visual quality locally rather than in
an average SNR/bits savings measurement for a
sequence.

7.10. Movie scenes coding

In Table 22, we present results of our experi-
ments on coding of movie scenes test set under
pre-selected combinations of reference frames,
B-pictures, and CAVLC or CABAC.

For the movie scene test set, the results show a
significant reduction in bit-rate in 9–19% range
(14% average) when 1 B-picture coding is used
compared to no B-picture coding. This reduction
in bit-rates is accompanied with slight reduction in
SNR, but visually the quality is the same as in the
case of no B-pictures. Using 2 B-pictures, an
additional gain of about 3–10% was obtained for a
total improvement range of 12–30% over no B-
pictures. Next, for the 3 reference and 2 B-picture
case we replaced CAVLC with CABAC and find
that additional improvement of 5–10% range (7%
average) could be obtained with use of CABAC.
8. Additional tools, features, and system support

8.1. Arbitrary slice order, and slice groups

As mentioned earlier, a picture may be divided
into one or more slices, where a slice is a sequence

ARTICLE IN PRESS

Slice Group 0

Slice Group 1 Slice Group 2

Slice Group 0

Slice Group 1

Slice Group 2
Slice Group 0

Slice Group 1

(a) (b) (c)

Fig. 30. (a)–(c) Examples of macroblocks organized into slice groups.

Table 22

Experiments in coding of movie test set with coding using either 3 Ref pic and no B-pic, or 3 Ref pic and 1 B-pic, or 3 Ref pic and 2B-

pic, or 3 Ref pic ,2 B-pic and CABAC; spatial direct, and RDOpt

Sequence 3 Ref pic, No B-pic,

CAVLC

3 Ref pic, 1 B-pic, CAVLC 3 Ref pic, 2 B-pic, CAVLC 3 Ref pic, 2 B-pic, CABAC

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Bit-rate

(kbps)

Y SNR

(dB)

Apollo.1 445.81 37.46 406.55 (�8.81%) 37.37 386.69 (�13.26%) 37.20 352.72 (�20.87%) 37.24

Apollo.2 726.21 34.66 583.82 (�19.61%) 34.54 511.35 (�29.59%) 34.40 480.48 (�33.83%) 34.45

Golden .1 892.29 33.94 725.25 (�18.72%) 33.92 631.26 (�29.25%) 33.66 582.33 (�34.74%) 33.73

Golden.2 777.23 39.13 660.14 (�15.20%) 38.72 605.91 (�22.04%) 38.50 554.97 (�28.59%) 38.56

AnyGiv.1 1804.41 33.99 1632.26 (�9.54%) 33.55 1589.49 (�11.92%) 33.28 1456.61 (�19.27%) 33.34

AnyGiv.2 778.67 36.51 680.54 (�12.60%) 36.31 642.45 (�17.49%) 36.03 588.71 (�24.39%) 36.08

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 839
of macroblocks. For the purpose of coding, a slice
is defined to be a self-contained entity.

In some profiles of the standard, slices can be
sent in an arbitrary order. When the slices are sent
in an arbitrary order, at the decoder, macroblock
address of the first macroblock of a slice may be
smaller than macroblock address of some other
preceding slice in the same coded picture.

Further, slices can be bundled into groups,
appropriately called, slice groups. Thus, a slice
group may have one or more slices. The
exact number of slices is specified by a para-
meter (num slice groups minus1) in picture
parameter set. If there are more than one slice
groups an additional parameter slice group
map type specifies a number of mapping arrange-
ments of slices and can take a value in the range
of 0 to 6. Fig. 30 shows examples of a few
arrangements of slice groups supported by the
standard.
When the value of slice group map type is 0, it
means interleaved slice groups, when 1, it means
dispersed allocation, when 2, it means 1 or more
slice groups may represent foreground with left-
over, when 3,4,5, it means that slice groups are
changing as per a preset pattern which can be
deduced from size and shape, and, when 6, it
means explicit assignment slice group to each
macroblock. For each value of slice group
map type, different syntax elements may be
carried in the bitstream to precisely be able to
deduce at the decoder, mapping of macroblocks to
slice groups used while encoding.

While a detailed discussion of various syntax
elements is outside of the scope of this paper, in
Table 23, we include a summary of various slice-
group mapping types, and their meaning and
syntax elements needed.

Further, the standard also supports the concept
of redundant slices, which implies that in certain

ARTICLE IN PRESS

Table 23

Slice group mapping identification

slice group map type Slice group mapping Info carried in bitstream

0 Interleaved run length minus1

1 Dispersed —

2 1 or more foreground, and a left-over top left[i], bottom right[i]

3 Changing slice groups: box-out slice slice group change direction flag and slice group change rate minus1

4 Changing slice groups: raster scan slice group change direction flag and slice group change rate minus1

5 Changing slice groups: wipe slice group change direction flag and slice group change rate minus1

6 Explicit assignment of slice

group to each map unit

picture size in map units minus1, slice group id[i]

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849840
error prone applications, certain coded slices may
be sent more than once (repeated) as needed.

8.2. 3:2 Pull down

In 525-line interlaced display video systems
such as that used in north America television
video signals are sampled and transmitted at
approximately 59.94 fields/ps. The digital televi-
sion system for 525-line interlaced video format,
uses compressed video streams encoded using
MPEG-2 video at approximately 29.97 frames
per second (fps). Hereinafter, for simplicity, we
may use the term 30 fps to refer to rates such as
29.97 fps.

Film material produced at 24 fps is routinely
converted to 60 field/ps in many applications. This
is known as the 3:2 pull-down process. When using
the MPEG-2 video standard with the film mode,
the frame rate encoded in the sequence header is
30 fps for interlaced display, even though the video
is actually coded as a 24 fps film sequence. The
encoder also conveys to the decoder, proper
display timing based on the frame rate of 30 fps.
The flags top field first and repeat first field in the
picture coding extension header are used for
indicating how a picture should be displayed.
These two flags are mandated MPEG-2 syntax
elements that are carried in the bitstream for use
by the decoder. However, this lack of flexibility is
not be desirable, particularly, when the type of
display device may vary, for example, either an
interlaced television or a progressive monitor.
Furthermore, the encoder does not know the type
of display employed at the decoder end.
In MPEG-2, the flags top field first and re-

peat first field along with the frame rate can also
be used to derive Decoding Time Stamps (DTS)
and Presentation Time Stamps (PTS) for some
pictures. The flags (i.e., top field first and re-
peat first field) are used to achieve proper timing
for decoding and displaying the coded 24 fps film
material to generate output video at 30 fps. As
mentioned earlier, this may not be desirable when
the display device is not an interlaced television
(e.g., it is a progressive monitor), and further, since
the encoder does not know the type of display
employed at the decoder. The problem may be
further complicated because, in broadcast systems,
there may be many decoders decoding the same
signal and possibly different types of monitors
being used to display the same signal.

H.264/MPEG-4 AVC provides an alternative
approach [4,6] for solving this problem. In H.264/
MPEG-4 AVC, the picture timing SEI message
can be used as a picture-level optional hint
message for display related information that
indicates how the picture should be displayed on
interlaced monitors. The hint message may be used
to facilitate the coding and display of, for example,
converted film material.

The encoding and display processes may be
decoupled using the hint messages to support
interlaced display. For example, a film sequence
may be originally coded at the frame rate of 24 fps.
Hint messages may be inserted in each picture-
level header to indicate the 3:2 pull-down process
for interlaced display. It is different from typical
use of MPEG-2 video because the frame rate here
is the rate for actual coded frames. Decoders may

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 841
be free to ignore or to use the optional hint
messages. Decoders with progressive display de-
vices may, for example, ignore the hints. Decoders
with interlaced display devices may, for example,
use those hints in a manner that is similar to the
MPEG-2 film mode.

This alternative approach allows encoding
systems that are capable of coding progressive or
interlaced video to not to have to make implicit
assumptions about the nature of the display
device, e.g. encoding the film material at the actual
desired film frame rate (e.g., 24 fps) in a progres-
sive sequence. The encoder may embed hints in the
coded bit stream about how to display the encoded
content, while keeping the timing information of
the encoded video based on a source temporal
sampling. Accordingly, in some cases, the time-
stamping process for DTS and PTS in MPEG-2
systems may be different than that for MPEG-2
video.

8.3. Trick modes for PVR

Personal video recorder (PVR) offers consumers
a hard disk or networked-based VCR that digitally
records live video programs while offering the
versatility of select playback and associated
special features. The viewer can take advantage
of trick play features such as pause/still,
fast forward, slow forward, rewind, slow reverse,
skip, etc.

When the compressed stream is being recorded,
an index table pointing to start code within the
stream can be created and written into a file. The
table is used for indexing locations of (I-, P-, and
B-) pictures within the stream to allow a decoder
to further manipulate the stream such as to remove
certain pictures or other trick mode elements
without parsing the entire stream. In prior
standards, picture-coding type for each picture is
always using a fix-length code for simplicity and
immediately follows picture start code. This makes
the table creation process simple. However, if the
compressed stream is scrambled, the picture start
codes and coding types are scrambled since these
are hard to separate from other picture header
data. Therefore, in this case, the index table cannot
be created without descrambling the stream first.
In H.264/MPEG-4 AVC, Access unit delimiter
NAL unit can be used to index location of primary
decoded picture within the stream to support trick
mode. To provide better indexing efficiency and
more security, the access unit delimiter NAL unit
can be transferred without scrambling while all
other AVC contents are scrambled. During
recording stage, the video streams do not need to
be descrambled. Since access unit delimiter NAL
unit is not scrambled, indexing engine can find the
unit and build the index table without descram-
bling and processing the video content, i.e.
recorded video content is still in its originally
scrambled form.

When a stored stream is played back, in order to
accomplish trick mode for audio or/and video,
modifications to the configuration of the decoder
and/or manipulations to the stream itself may be
used. Common applications of this would be to
allow for fast-forward or rewind of a stream while
it is being played from a disk. If a stream is
manipulated after recording but before playback
by the decoder in the proper way, the decoder can
be configured to decode the result as if it had not
been altered at all. An example would be to send
only I-frames to the decoder, dropping P and B
frames before playback.

8.4. NAL packetization

This standard is designed for diverse applica-
tions ranging from broadcasting over Cable,
Satellite or Terrestrial networks to streaming over
IP networks to video telephone or conferencing
over wireless or ISDN channels. They use different
protocols and schemes for the distribution of
compressed video. To allow maximum flexibility
to adapt the syntax to a particular application,
network environment and delivery mechanism, the
video syntax is broken into two layers—video
coding layer (VCL), and network abstraction layer
(NAL). VCL consists of the bits associated with
the slice layer or below - the primary domain of the
compression tools. NAL formats the compressed
video data (VCL) and provides additional non-
VCL information such as, sequence and picture
parameters, access unit delimiter, filler data,
supplemental enhancement information (SEI),

ARTICLE IN PRESS

‘0’ bit NAL Ref. IDNAL Unit Type

2 bits 5 bits VCL or Non-VCL data1

8 bits

1bit

Fig. 31. NAL unit format.

NAL Formatting NAL Formatting

VCL NAL Units

VCL Data Non-VCL Data

Non-VCL information
Delivered by external means

Non-VCL NAL Units and
VCL NAL Units

Fig. 32. NAL formatting of VCL and non-VCL data.

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849842
display parameters, picture timing etc., in a way
most appropriate for a particular network/system
such as packet oriented, or bitstream oriented. For
example, to carry the data using MPEG-2 TS,
start code prefixes are added and specific order in
which information should arrive is defined. In the
standard, this type of format is called Byte-Stream
format.

All data related to video stream is encapsulated
in packets called NAL Units (NALU). Format of
a NALU is shown in Fig. 31.

First byte of each NALU is a header byte and
the rest is the data (including emulation prevention
byte). First bit of the header is a 0 bit. Next 2 bits
indicate whether the content of NALU consist of
sequence or picture parameter set or a slice of a
reference picture. Next 5 bits indicate the NALU
type corresponding to the type of data being
carried in that NALU. There are 32 types of
NALUs allowed. These are classified in two
categories: VCL NAL units and non-VCL NAL
Units. NALU types 1–5 are VCL NALUs and
contain data corresponding to the VCL. NALUs
with NALU type indicator value higher than 5 are
non-VCL NALUs and carry information like SEI,
sequence and picture parameter set, Access Unit
Delimiter etc. For example, NALU type 7 carries
the sequence parameter set and type 8 carries the
picture parameter set. As shown in Fig. 32,
depending upon a particular delivery system and
scheme non-VCL NALUs may or may not be
present in the stream containing VCL NALUs.
When non-VCL NALUs are not present in the
stream containing VCL NALUs, the correspond-
ing information can be conveyed by any external
means in place in the delivery system.

8.5. HRD issues

In order to make sure that encoders do not
generate a bit stream that is not compliant with the
standard, a hypothetical reference decoder (HRD)
model is provided. It provides model of a
theoretical decoder that is assumed by an encoder
while generating the bit streams. This model
contains input coded picture buffer (CPB), an
instantaneous decoding process and an output
decoded picture buffer (DPB). It also includes the
timing models—rate and time when the bytes
arrive at the input of those buffers and when the
bytes are removed from those buffers. An encoder
must create the bit streams such that the CPB and
DPB buffers of HRD do not overflow or under-
flow.

There are two types of conformance that can be
claimed by a decoder—output order conformance
and output timing conformance. To check con-
formance of a decoder, test bitstreams conforming
to the claimed Profile and Level are delivered by a
hypothetical stream scheduler to both HRD and
the decoder under test. For output order con-
formant decoder, the values of all decoded pixels
and order of the output pictures must be the same
as those of HRD. For output timing conformant

ARTICLE IN PRESS

Table 24

Profiles of H.264/MPEG-4 AVC standard and summary of tools included in each profile

Coding tools Profile

Baseline Main Extended

I, P slices X X X

CAVLC X X X

Error resilience tools (FMO, ASO, Redundant slices) X X

Streaming/higher error resilience tools (SI, SP slices, Data partioning) X

B slices X X

Interlaced coding tools (Frame, Field, PicAFF, MBAFF) X X

CABAC X

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 843
decoder, in addition, the output timing of the
pictures must also be the same as that of HRD.
9. Profiles, levels and complexity

9.1. Details of Profiles and Levels

As discussed in Section 2.2, the standard
currently includes three profiles. The profile
structure can be best summarized with help of
Table 24, which explicitly shows the tools cate-
gories as well as individual tools of the standard.
Actually, to define an interoperability point, we
need to specify not only a Profile but also a Level.
A Level provides semantic constraints on para-
meters/options within a tool and is important as it
indicates memory or processing limit. A decoder
compliant with a particular Profile and Level must
implement all the tools and constraints specified.
An encoder may choose to use a smaller subset of
tools specified in a Profile to generate and still be
able to generate a bitstream compliant with a
chosen Profile/Level.

Syntax of the standard also allows one to send
three constraint flags in the bit stream: con-
straint set0 flag, constraint set1 flag and con-
straint set2 flag. When constraint set0 flag is set
to 1 then it implies that the bit stream is compliant
with Baseline Profile, when constraint set1 flag is
set to 1 then it implies that the bit stream is
compliant with Extended Profile and when con-
straint set2 flag is set to 1 then it implies that the
bit stream is compliant with Main Profile. When
two or more of these flags are set to 1 then it
implies that the bit stream is compliant with two or
more profiles. For example, if constraint set0 flag
and constraint set2 flag both are set to 1 then the
bit stream is compliant with both Baseline and
Main profiles, i.e. the encoder can use only
those coding tools that are common to both
Baseline and Main profiles. In this case, the
bitstream can be decoded by both Baseline and
Main profile decoders. This way one can achieve
cross-profile interoperability and generate bit
streams that can be decoded by all AVC/H.264
decoders compliant to any of the profiles.

We now discuss details of how levels are
defined for these profiles and provide examples
of typical use. For decoder specification it is
important to specify the processing power and
the memory size needed for implementation.
Picture size plays an important role in influencing
those parameters. The standard has defined 15
different Levels tied mainly to the picture size and
maximum compressed bit-rates parameters.
Further, Levels also provide constraints on the
number of reference pictures that can be used in
the standard.

Table 25 shows Levels specified in the standard
and some of the parameter values and the
constraints specified. A decoder compliant with a
particular Profile and Level must be able to decode
a bitstream compliant to that Profile and Level
as well as all the bitstreams compliant with
that Profile and all the lower numbered Levels.
Also, as the interlaced scan formats are used
for half horizontal resolution (known as HHR,

ARTICLE IN PRESS

Table 25

Levels to be supported in profiles of H.264/MPEG-4 AVC standard

Level number Example of typical

picture size

Typical frame rate for

typical picture size

Maximum compressed

bit-rate (for VCL)

Maximum number of

reference frames for

typical picture size

1 QCIF 15 64 kbps 4

1.1 QVGA (320� 240) 10 192 kbps 3

QCIF 30 9

1.2 CIF 15 384 kbps 6

1.3 CIF 30 768 kbps 6

2 CIF 30 2Mbps 6

2.1 HHR 4Mbps

(352� 480) 30 7

(352� 576) 25 6

2.2 SD 15 4Mbps

(720� 480) 6

(720� 576) 5

3 SD 10Mbps

(720� 480) 30 6

(720� 576) 25 5

VGA (640� 480) 30 6

3.1 1280� 720P 30 14Mbps 5

SVGA (800� 600) 56 9

1280� 720P 60 20Mbps 5

3.2 4VGA (1280� 960) 45 4

4 All HD Formats 20Mbps

(1280� 720P) 60 9

(1920� 1080I) 30 4

2k� 1k 30 4

4.1 HD Formats 50Mbps

(1280� 720) 60 9

(1920� 1080) 30 4

4.2 1920� 1080 60 50Mbps 4

5 2k� 1k 72 135Mbps 14

16VGA (2560� 1920) 30 5

5.1 2k� 1k 120 240Mbps 16

4k� 2k 30 5

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849844
i.e. 352� 480 or 352� 576), SDTV and HDTV
pictures; interlaced coding tools are applicable
only at Levels 2.1–4.1.

Note that in the standard, Levels specify the
maximum frame sizes in terms of only the total
number of pixels/frame. The constraints on the
number of pixels along horizontal and vertical
dimensions are not specified except that the
horizontal and the vertical sizes cannot be more
than square root (8�maximum frame size) Frame
sizes shown are only some of the examples of
typical frame sizes used in various applications at
different Levels. A user has freedom to choose
other frame sizes as long as total number of pixels/
frame and horizontal and vertical sizes are with in
the specified constraints.

Also, instead of specifying a maximum frame
rate at each Level, maximum sample (pixel) rate,
in terms of MB/s is specified. The maximum frame
rates for the example typical picture sizes shown in
the 3rd column of the table. If the picture sizes are
smaller than the typical picture sizes in that
column then the frame rates can be higher than
those by up to the maximum of 172 fps.

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 845
Furthermore, the maximum number of refer-
ence frames is specified in terms of total memory.
The maximum number of reference frames for
example typical picture sizes in 2nd column, is
shown by values in the 5th column. If, at a
particular Level, the picture size is less than the
one in that column then more number of reference
frames, up to 16 frames, can be used for motion
estimation.

9.2. Complexity implications

We now briefly discuss basic implications in
terms of complexity [16,40] of individual tools of
the standard.

* Intra prediction: Intra prediction in H.264/
MPEG-4 AVC is relatively more complex than
MPEG-2 video and MPEG-4 video (part 2) due
to the nature of 4� 4 block prediction, which
needs to compute many different prediction
candidates for various 4� 4 blocks in a macro-
block. Further, each direction of prediction
uses specific combination of decoded neighbor
pixels.

* Motion estimation: As in previous standards,
motion estimation is a non-normative, per-
formed only during encoding. Motion search
complexity can be quite high due to possible of
use of multiple reference frames, multiple block
sizes, and 1

4
pixel accuracy. Further, as in

the case of previous standards, the complexity
depends on whether motion estimation uses
full search or reduced search, and if search
starts with a zero motion estimate or with a
prediction motion vector based on neighboring
blocks.

* Motion compensated inter prediction: Motion
compensated prediction will need to be per-
formed on all block sizes such as 16� 16,
16� 8, 8� 16, 8� 8, 8� 4, 4� 8, and 4� 4
which can contribute to a significant increase in
memory bandwidth caused by the worst case of
small block sizes. Further, 1

4 pixel motion
compensation requires 6 tap filters in horizontal
and vertical direction for 1

2
pixel positions, and a

2-tap horizontal, vertical or diagonal filter for 1
4

pixel refinement. The 6 tap filters require data
arrays input to the filter to be up to 5 more
pixels extra in each direction. For example a
4� 4 MC sub-block with quarter-pel motion
requires reading a 9� 9 array of pixels from
reference picture in DRAM. Since with MC
subblocks as small as 4� 4, there can be as
many as 16 subblocks for which MC is needed
in one MB. With bi-prediction, two references
may be simultaneously needed. Thus the
memory bandwidth requirement of various
modes available for inter prediction is some-
what excessive.

* Transform/quantization: The calculation of
scale factor involves the use of tables and
modulo-6 operation, among other things.

* Loop filter: The loop filter is specified to operate
on the MBs in raster scan order. This is
significant because the filter needs access to
pixels in the neighboring decoded MBs above
and to the left of the current MB, and in some
decoder implementations there may be a
problem to have the upper and left neighbor
MBs available to the loop filter. Additional
complexity of the deblocking filter is mainly due
to the high adaptivity of the filter that requires
conditional processing on the block edge. As a
consequence, conditional branches are required
in the most inner loops of the MB reconstruc-
tion process. This requires intensive branching
in filtering operations and can be a challenge for
parallel processing in certain implementations.
Further, since the filter is in the coding loop,
encoder implementations must exactly match
mathematically with the filter specified in the
standard. Another reason for the high complex-
ity is the small block size employed for residual
coding in the H.264 coding algorithm. With the
4� 4 blocks and a typical filter length of 2
samples in each direction, almost every sample
in a picture must be loaded from memory,
either to be modified or to determine if
neighboring samples will be modified. This
was not the case for the H.263 loop filter or
with MPEG-4 (part 2) post filter, which
operates on an 8� 8 block.

* Mode decision: Mode decision although an
encoding issue tends to be substantially more
complex due to the larger number of modes

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849846
possible for each MB in the AVC standard.
Efficient mode decision may use RDOpt
which requires multiple coding iterations on a
macroblock basis followed by the determina-
tion of best RD tradeoffs.

* Entropy coding: Decoding of three types of
entropy coding (Exp-Golomb, CAVLC, and
CABAC) requires different architectures.
CAVLC although more complex then the
VLC methods of previous standards is still
relatively lower in complexity as compared to
CABAC, in which major reason for complexity
is the serial nature of many operations and
context formation.

* Interlace coding: In frame pictures with MB-
AFF enabled, all MBs are organized into pairs
called Super-MBs, with each pair consisting of a
vertically adjacent pair of MBs. Each Super-
MB is either field coded or frame coded. This
vertical pairing and Super-MB level variability
in format can be a challenge in decoding coded
streams.
10. Summary

In this paper, we first presented an overview of
video coding as per the H.264/MPEG-4 AVC
standard, introducing tools in this standard and
briefly discussed profiles of the standard. Several
of the important coding tools were then discussed
in detail. We then presented results of our study
comprising of systematic evaluation by experi-
ments, the contribution to coding performance of
many of these tools these tools, as well as certain
combinations of these tools. We then discussed
system tools, details of profiles and levels, and the
important issue of coding complexity. In terms of
coding performance the significant findings of our
study are as follows:

* As in the case of earlier standards, B-pictures
remain a significant tool. Coding with 1 B-
picture provides a gain of 10–24%, and with
2 B-pictures, 14–34%, over the case of no B-
pictures. When coding of movie scenes, the gain
with B-pictures was slightly lower but still–quite
significant, i.e. with 1 B-picture, it is in the
range of 9–19%, and with 2-B pictures, it is in
the range of 12–29%. While it is true that the
stated B-picture gains are accompanied with
small reduction in SNR due to slightly higher
quantizer for such pictures, due to temporal
masking and noise averaging properties of B-
pictures, these SNR differences are not visually
perceptible.

* Although strictly an encoding issue, due to a
plethora of coding modes, good mode decision
is quite important and ranks second, right next
to B-pictures. Actually, a good mode decision is
even more important with more (e.g. 2) B-
pictures as compared to the case of fewer
(e.g. 1) B-pictures. In comparison to non-RD
optimized mode decision, RD optimized mode
decision provides, for the case of 1 B-picture
coding, a gain of 5–13% (7.5% on the average),
and for the case of 2 B-picture coding, a gain of
10–22% range (14% on the average). The RD
optimized mode decision of JM, while it
performs well, it explicitly requires multiple
coding iterations for each macroblock and thus
presents difficulties in realizing a practical, fast
encoder.

* The gain from CABAC can also be important
and varies depending on the properties of
sequence and coding bit-rates. For the
test sequences and conditions we chose as
being representative of normal coding, the
average gain, for 1 B-picture coding was
found to be 6.8%, and, with 2 B-pictures,
the average gain was slightly higher, 7.2%.
The overall average gain was thus found to be
7%. For coding of movie scenes, the gain was
found to be also similar. Quite likely, in coding
less detailed sequences or when coding with
higher quantizers in general, gains may be
higher.

* Gains from multiple reference pictures are
typically small but sometimes can be higher as
the performance of this tool is very scene
dependent. Further, multiple reference pictures
are effective with fewer B-pictures. For in-
stance, in the case of 1 B-picture coding, the use
of 3 reference pictures as compared to 1
reference picture, provides a gain of 2–8%
(5% average), while the use of 5 references

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 847
pictures can provide 2–10% gain. However, for
the case of 2 B-picture coding, use of 5 reference
pictures over 1 reference picture, provides a
gain of only 1–6% (3% average). Overall the
gains from additional B-pictures are higher
than that from reference pictures, thus 2 B-
picture coding with 1 reference picture performs
much better than 1 B-picture coding with 5
reference pictures!

* The impact of loop filter in terms of reduction
of coding bit-rate is relatively small (0.5%–2%),
however it has a bigger impact on perceived
visual quality. Loop filtering results in smooth-
ing of block boundaries but since transform
coding block sizes are only 4� 4, due to the
nature of the support used by the filter,
especially at lower bit-rates, some fine details
may also be lost. The loop filter, smoothes out
blockiness and coding noise and generally
produces more visually acceptable quality.
Proper regulation of the loop filter to produce
even improved blockiness/visual quality trade-
offs by encoder parameter selection, may be
possible.

* For motion compensation, use of no smaller
than 8� 8 blocks as compared to all available
block sizes for the case of 1 B-picture, results in
loss of 1.75% on the average, and for the case
of 2 B-pictures, loss of 2.5% on the average. In
fact, the results are very scene dependent and
range from loss of around 1% on slower motion
scenes to as much as 5% on more complex fast
moving scenes. Note that these results were
obtained for the case of RDOptimized mode
decision. Besides bit-rate difference, use of
small blocks may also provide some improve-
ment in visually quality.

* For interlaced video coding, picture adaptive
frame/field coding provides a gain of 6–32%
over frame coding, while macroblock adaptive
frame/field coding provides a gain of 11–34%
gain. Macroblock adaptive frame/field coding
is however more complex. Since picture
adaptive frame field coding can offer most
(if not all) of the gains of macroblock adaptive
frame field coding, it offers a good trade-
off. Performance of other interlaced tools such
as frame coding or field coding is very
dependent on motion and details in the
sequence but is lower than picture adaptive
frame/field coding.

* Other tools as well as related encoding options
seem to make very little difference to overall
coding efficiency.
Acknowledgements

We would like to thank Dr. Karsten Suehring
for the public domain JM6.1e software used in our
experiments. We would like to thank Dr. Gary
Sullivan for his thorough and careful review and
many helpful suggestions for improvement. We
would also like to thank Dr. Shawn Zhong and
Dr. Wade Wan for their very helpful review of
earlier drafts of the paper.
References

[1] W. K. Cham, Family of order-4 four level ortho-

gonal transforms, Electron. Lett. 19 (21) (October 1983)

869–871.

[2] W.K. Cham, R.J. Clarke, Simple high efficiency trans-

form for image coding, in: Proceedings of the Interna-

tional Picture Coding Symposium, Davis, CA, 1983,

pp. 66–67.

[3] X. Chen, R. Eifrig, A. Luthra, K. Panusopone, Coding of

an arbitrary shaped interlaced video in MPEG-4, in:

Proceedings of the IEEE International Conference on

Accoustics, Speech and Signal Processing (ICASSP’99),

1999 pp. 3121–3124.

[4] S. (X.) Chen, A.G. MacInnis, SEI message for the film

mode hint in JVT codec, JVT-E078, Joint Video Team of

ISO/IEC MPEG and ITU-T VCEG, Geneva, October

2002.

[5] R.J. Clarke, Transform Coding of Images, Academic

Press, New York, 1985.

[6] D. Green, G. Sullivan, Field repetition and timing

indications, JVT-E122, Joint Video Team of ISO/IEC

MPEG and ITU-T VCEG, Geneva, October 2002.

[7] A. Hallapuro, M. Karczewicz, H. Malvar, Low complexity

transform and quantization—Part I: basic implementation,

JVT-B38, Joint Video Team of ISO/IEC MPEG and ITU-

T VCEG, January 2002.

[8] B.G. Haskell, A. Puri, A.N. Netravali, Digital Video: An

Introduction to MPEG-2, Chapman & Hall/Kluwer

Academic, New York, 1997, ISBN: 0-412-08411-2.

[9] ISO/IEC JTC1/SC29, Coding of moving pictures and

associated audio for digital storage media up to about

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849848
1.5Mbit/s, ISO/IEC 11172-2, International Standard,

November 1992.

[10] ISO/IEC JTC1/SC29, Generic coding of moving pictures

and associated audio, ISO/IEC 13818-2, Draft Interna-

tional Standard, November 1994.

[11] ISO/IEC JTC1/SC29, Coding of audio-visual objects, ISO/

IEC 14496-2, International Standard:1999/Amd1:2000,

January 2000.

[12] Joint Model Editing Committee (G. Sullivan, T. Wiegand,

K.-P Lim), Joint model reference encoding methods

and decoding concealment, JVT-I049, Joint Video

Team of ISO/IEC MPEG and ITU-T VCEG, September

2003.

[13] JVT Software Implementation Group (K. Suehring, et al.),

JM6.1e Reference Software, March 2003.

[14] JVT Editors (T. Wiegand, G. Sullivan, A. Luthra),

Draft ITU-T Recommendation and final draft interna-

tional standard of joint video specification (ITU-T

Rec.H.264|ISO/IEC 14496-10 AVC), JVT-G050r1,

Geneva, May 2003.

[15] A. Kaup, H. Mooshofer, Performance and com-

plexity analysis of rate constrained motion estimation

in MPEG-4, in: Proceedings of the SPIE Multimedia

Systems and Applications, Boston, September 1999,

pp. 202–211.

[16] V. Lappalainen, A. Hallapuro, T. D. Hamalainen, Com-

plexity of optimized H.26L video decoder implementation,

IEEE Trans. Circuits Systems Video Technol. 13 (7), (July

2003) 717–723.

[17] A. Luthra, P. Topiwala, Overview of H.264/AVC video

coding standard, in: Proceedings of the SPIE—Applica-

tions of Digital Image Processing XXVI, San Diego,

Vol. 5203, August 2003.

[18] D. Marpe, H. Schwarz, T. Wiegand, Context-based

adaptive binary arithmetic coding in the H.264/AVC

compression standard, IEEE Trans. Circuits Systems

Video Technol. 13 (7), (July 2003) 620–636.

[19] K. Panusopone, X. Chen, R. Eifrig, A. Luthra,

Coding tools in MPEG-4 interlaced video, IEEE

Trans. Circuits Systems Video Technol. 10 (5), (August

2000) 755–766.

[20] A. Puri, Efficient motion compensated coding for

low bitrate video applications, Ph.D. Thesis, February

1988.

[21] A. Puri, Conditional motion-compensated interpolation

and coding, in: Second International Workshop on 64Kb/

s coding of moving video, Hannover, West Germany,

September 1989, pp. 1.5.

[22] A. Puri, Multi-frame conditional motion-compensated

interpolation and coding, in: Picture Coding Symposium,

Cambridge, MA, March 1990, pp. 8.3.1–8.3.2.

[23] A. Puri, Video coding using the MPEG-1 compression

standard, Proceedings of the International Symposium

of Society for Information Display, Boston, May 1992.

pp. 123–126.

[24] A. Puri, Video coding using the MPEG-2 compression

standard, in: Proceedings of the SPIE EI—Visual Com-
munication and Image Processing, SPIE, Boston,

vol. 1199, November 1993, pp. 1701–1713.

[25] A. Puri, R. Aravind, On comparing motion-interpolation

structures for video coding, in: Proceedings of the SPIE

Visual Communication and Image Processing, Lausanne,

Switzerland, October 1990, pp. 1560–1571.

[26] A. Puri, R. Aravind, Motion-compensated video coding

with adaptive perceptual quantization, IEEE Trans.

Circuits Systems Video Technol. 1 (4), (December 1991)

351–361.

[27] A. Puri, R. Aravind, B. Haskell, Adaptive frame/field

motion compensated video coding, Signal Processing:

Image Communication, 5 (1–2) (February 1993) 39–58.

[28] A. Puri, R. Aravind, B. G. Haskell, R. Leonardi, Video

coding with motion-compensated interpolation for CD-

ROM applications, Signal Processing: Image Communica-

tion, 2 (2), (August 1990) 127–144.

[29] A. Puri, T. Chen, Multimedia Systems, Standards, and

Networks, Dekker, New York, 2000, ISBN: 0-8247-

9303-X.

[30] A. Puri, H.-M. Hang, D. L. Schilling, An efficient block-

matching algorithm for motion compensated coding, in:

Proceedings of the IEEE International Conference on

Acoustics, Speech, Signal Processing (ICASSP’87), Dallas,

April 1987, pp. 25.4.1–25.4.4.

[31] A. Puri, H.-M. Hang, D. L. Schilling, Motion-compen-

sated transform coding based on block motion tracking

algorithm, Proceedings of the IEEE International Con-

ference Communication (ICC’87), Seattle, June 1987,

pp. 5.3.1–5.3.5.

[32] A. Puri, H.-M. Hang, D. L. Schilling, Interframe

coding with variable block-size motion compensation, in:

Proceedings of the IEEE Global Communication

Conference (GLOBECOM’87), (Tokyo) November 1987,

pp. 65–69.

[33] A. Puri, R. L. Schmidt, B. G. Haskell, Improvements in

DCT based video coding, in: Proceedings of the SPIE EI-

Visual Communication and Image Processing, San Jose,

February 1997.

[34] A. Puri, R. L. Schmidt, B. G. Haskell, Performance

evaluation of the MPEG-4 visual coding standard, in:

Proceedings of the SPIE EI-Visual Communication and

Image Processing, San Jose, January 1998.

[35] H. Schwarz, T. Wiegand, An improved MPEG-4

coder using lagrangian coder control, VCEG-M49, Video

Coding Experts Group, March 2001.

[36] Video Test Model Editing Committee, MPEG-2 video test

model 5 (TM5), ISO/IEC JTC1/SC29/WG11 N0400, April

1993.

[37] T. Wiegand, B. Girod, Lagrange multiplier selection in

hybrid video coder control, in: Proceedings of the IEEE

International Conference on Image Processing (ICIP’01),

Greece, 2001.

[38] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, G.

Sullivan, Rate-constrained coder control and comparison

of video coding standards, IEEE Trans. Circuits Systems

Video Technol. 13 (7) (July 2003) 688–703.

ARTICLE IN PRESS

A. Puri et al. / Signal Processing: Image Communication 19 (2004) 793–849 849
[39] T. Wiegand, G. J. Sullivan, G. Bjoentegaard, A. Luthra,

Overview of the H.264/AVC video coding standard,

IEEE Trans. Circuits Systems Video Technol. 13 (7) (July

2003) 560–576.

[40] A. Wise, R. Whiten, Y. Nemouchi, P. B. Thomas, Model

for estimating prediction bandwidth for H.26L, JVT-E93,
Joint Video Team of ISO/IEC MPEG and ITU-T VCEG,

October 2002.

[41] P. Yin, H.-Y. Tourapis, A. Tourapis, J. Boyce, Fast mode

decision and motion estimation for JVT/H.264, in: IEEE

International Conference on Image Processing (ICIP’03),

2003.

	Video coding using the H.264/MPEG-4 AVC compression standard
	Introduction
	H.264/MPEG-4 AVC codec overview
	Coding structure
	Overview of coding tools
	Overview of profiles
	H.264/MPEG-4 AVC codec
	Components of the codec
	Transform
	Quantization and scan
	CAVLC and CABAC entropy coders
	Loop filter
	Mode decision
	Intra prediction
	Inter prediction

	Encoding process
	Slice header and MB syntax encoding
	Rate control and mode decision
	Intra-MB and inter-MB encoding
	MB reconstruction

	Decoding process for residue blocks

	Intra prediction, and motion compensated prediction
	Intra prediction
	4times4 prediction of luma
	16times16 prediction of luma
	Prediction of chroma

	Inter/motion compensated prediction
	Multiple reference pictures for motion compensation
	Multiple block-size motion compensation with small block sizes
	Motion vectors
	Skipped and direct motion prediction modes
	Luminance fractional sample interpolation
	Chrominance fractional sample interpolation
	Weighted sample prediction

	Intra and MC modes supported

	Transform, quantization, and loop filter
	Basics of transform selected
	Scan, transform and quantization
	Scan
	Inverse transform operation for intra dc with 16times16 prediction
	Inverse quantization operation
	Coefficient assembly and general inverse transform operation

	Interlace video coding tools
	Deblocking loop filter
	Deblocking rules
	Filtering process

	Entropy coding
	Golomb code and code mapping
	CAVLC
	CABAC
	CABAC basics
	Binarization
	Context modeling
	Adaptive binary coding engine

	Core encoding issues
	Motion estimation
	Motion estimation search strategy
	1/4 pel using SATD instead of SAD
	Rate distortion optimized motion vector decision

	Rate distortion optimized mode decision
	Quantizer adaptation and rate control

	Experimental results
	Motion estimation
	Motion vector range
	Without and with Hadammard

	Number of B-pictures
	Number of reference pictures
	All MB vs. no sub8times8 MC modes
	RDOpt vs. non-RDOpt mode selection
	Spatial vs. temporal direct mode
	Loop filter on vs. loop filter off
	CAVLC vs. CABAC
	Interlaced video coding
	Movie scenes coding

	Additional tools, features, and system support
	Arbitrary slice order, and slice groups
	3:2 Pull down
	Trick modes for PVR
	NAL packetization
	HRD issues

	Profiles, levels and complexity
	Details of Profiles and Levels
	Complexity implications

	Summary
	Acknowledgements
	References

